4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

Formal Modeling and Analysis of
Flexible Automated Production Workflows

Awatef Hicheur and Kamel Barkaoui
CEDRIC-CNAM 292, Rue Saint-Martin Paris 75003 France
A _hicheur@cnam.fr, barkaoui@cnam.fr

Abstract- The aim of this paper is to show the relevance of our
model, namely Recursive ECATNets (RECATNets), in the
modeling and analysis of flexible workflows in manufacturing
systems. Recursive ECATNets are defined on the basis of a sound
combination of ECATNets (Extended Concurrent Algebraic Term
Nets) and Recursive Petri nets. Moreover, since RECATNets
semantics is defined in the conditional rewriting logic framework,
the use of formal verification techniques to prove liveness and
safety properties becomes possible.

I. INTRODUCTION

In order to stay competitive in a rapidly changing
environment, manufacturing enterprises are more and more
adopting workflow management systems (WfMSs for short), to
define, execute and control their manufacturing and logistics
processes [1], [11], [12], [13]. It is, also, well known that the
process of specifying a practical workflow schema (i.e. a
workflow definition) is complex and prone to errors. Among
the limitations of WIfMSs currently available in the
marketplace, one can note that the workflow schemas used by
many WfMSs are often not formally specified which makes it
hard to test the correctness of these workflow definitions
before putting them into production (e.g. we need to be able to
check that the workflow eventually terminates or that there are
no potential deadlocks)[19]. The use of formal methods for the
specification of workflows of production systems reduces
ambiguities and open possibilities for improving production
processes through analysis and verification. Another
limitations of currents WfMSs, is that only few of them
provide efficient ways of managing flexible workflows which
require dynamic adaptation of their structure at the occurrence
of exceptional situations and failures [9], [14]. It is prevalent
that faults are events that cannot be ignored in the automation
of manufacturing processes [15]. The development of
workflow systems that consider not only normal processes but
also detection and treatment of faults is essential for improving
the flexibility in the planning of shop floor operations [15]. In
this paper, we propose a modeling approach for flexible
automated production workflows, based on our model, namely
recursive ECATNet (RECATNet) [8]. This model offers
mechanisms allowing to manage dynamic structural changes of
systems (i.e. direct and intuitive support of dynamic creation
and suppression of processes). This ability is particularly
relevant for a faithful and a correct flexibility description in

workflow planning and execution (e.g. alternate planning,
modification of planning and execution of workflow processes;
dynamic creation and duplication of processes). Moreover,
these dynamic mechanisms are adequate to model, in a concise
way, the most complex routing constructs (or flow patterns) [2]
such the multiple instantiation of (sub)processes and the
cancellation of activities and cases (i.e. cancellation of running
sub-processes or global processes). The RECATNets model
extend the classical ECATNets formalism [3], [4] with the
recursion concept firstly introduced in the recursive Petri nets
(RPNs) [6]. ECATNets (Extended Concurrent Algebraic Term
Nets) are a kind of algebraic nets which combine the
expressive power of high-level Petri nets and algebraic abstract
types. Their semantics is expressed in terms of rewriting logic
[5]. The RPNs, for their part, are introduced as a strict
extension of the ordinary Petri net (PNs) [6]. We define
recursive ECATNets semantics in the conditional rewriting
logic framework. The structure of the this paper is as follows:
In section 2, we recall our RECATNet model. Section 3 shows
how RECATNets can be used in the modeling of flexible
workflows in manufacturing systems. In section 4, we express
the semantics of RECATNets in the conditional rewriting logic
framework and we show how the formal verification of the
given example can be done using the LTL Model-Checker of
Maude. Finally, section 5 concludes the paper.

II. RECURSIVE ECATNETS

A. ECATNets Review

An ECATNet is a high level net ¢ = (Spec, P, T, sort, IC,
DT, CT, Cap, TC) where: Spec = (2, E) is an algebraic
specification of an abstract data type given by the user (with £
its set of equations and 2 the set of operations and sorts) and
in which places marking are multisets of J-terms. The
graphical representation of a generic ECATNet is given in
Fig.1. Note that Txg(X) is the 3-algebra of the equivalence
classes of the J‘terms with variables in X, modulo the
equations E. MTxg(X) represents the free commutative monoid
of the terms T'x(X) endowed with the internal operator © and
having & as the identity element. CATdas(E, X) is the structure
of equivalence classes formed from the multisets of MTsz(X)
modulo the associative, commutative and identity axioms for
the operator ® [3]. -- P is a finite set of places;
-- T'is a finite set of transitions (with P N T'= &),

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

-- sort : P — S (with S the set of sorts of Spec);

-- Cap: P — CATdas(E, @), (Places Capacity);

- IC: P x T — CATdas(E, X)", (Input Condition), where
CATdas(E, X)' = {a' / a € CATdas(E, X) } U {&d / a €
CATdas(E, X) } U {a’/ a € CATdas(E, X) } U {ay A /Y i
a; € CATdas(E, X)'} U {ay v an/ ¥ i a; € CATdas(E, X)*}.
For a given transition ¢ (Fig.1.), the expression IC(p, f)
specifies conditions on the marking of the input place p for the
enabling of ¢. It takes one of the form given in the following

table:
O T

DT (p, t)

Fig. 1. A generic representation of an ECATNet

-- DT: P x T — CATdas(E, X), (Destroyed Tokens); the
expression DT(p, t) specifies the multiset of tokens to be
removed from the marking of the input place p when ¢ is fired.
Note that the multiset DT(p,) must be included in the marking
of p (i.e. DT(p, t) C IC(p, 1)).

- CT:P x T —» CATdas(E, X), (Created Tokens); the
expression CT(p', f) specifies the multiset of tokens to be
created in the output place p’, when ¢ is fired.
-- TC: T — CATdas(E, X)poo1, (Transition Condition); the
expression 7C(f) is a boolean term which specifies an
additional enabling condition for the transition ¢. It specifies
some conditions on the values taken by local variables of ¢. So,
TC(f) may contain variables occurring in the expressions /C(p,
t) and DT(p, t) related to the all input places of . Note that
when TC(¢) is omitted, the default value is the term True. A
transition ¢ is fireable when several conditions are satisfied
simultaneously: (1) every IC(p, ?) is satisfied for each input
place p of ¢ (2) the transition condition 7C(¢) is true and (3)
the addition of the tokens CT(p’, £) to the output place p’ of ¢
must not result in p’ exceeding its capacity when this capacity
is finite. When ¢ is fired, the multiset D7(p, ¢) is removed from
the input place p and simultaneously CT(p’, ¢) is added to the
output place p'.

Enabling condition

IC(p, V)
o The marking of p must be equal to o. (IC(p, £) = &°
means that the marking of p has to be empty)
+

o The marking of the place p must include a. (IC(p, f) =
&' means condition always satisfied).

2 The marking of the place p must not include o (with o #
9)
a; A @ | conditions o, and o, are both true

;v ay | o4 or o, is true

B. Recursive ECATNets

A recursive ECATNet has the same structure as an ordinary
ECATNet except that the transitions are partitioned into two
categories: abstract transitions (represented by a double border
rectangle, see Fig. 2) and elementary transitions (see Fig. 3).

<i> ICT (p’, tas, 1)

IC(p, tavs) Lans
ot i S Cg I8

DT(p, tabs

Fig. 2. A generic abstract transition

The enabling rule of a transition # (elementary or abstract) of
a recursive ECATNet is specified by the expressions IC(p,)
and TC (?). A transition ¢ is fireable when several conditions
are satisfied simultaneously: (1) every I/C(p, t) is satisfied for
each input place p of the transition #; (2) the condition TC(z) is
true and (3) the addition of tokens in the output places of this
transition must not result in exceeding the capacity of these
places when this capacity is finite. The execution of a recursive
ECATNet generates a dynamical tree of threads (denoting the
fatherhood relation) where each of these threads has its own
activity. One can note that all the threads of this tree can be
executed simultaneously.
-- When a thread fires an abstract transition #,,, it consumes
the multiset of tokens DT(p, t,) from the input place p and
simultaneously it creates a new child (i.e. a new thread) which
starts its execution with the initial marking (indicated in a
frame) associated to this abstract transition. The starting
marking of a created thread may depend on the state reached in
the thread which gave birth to it.
-- A family of boolean terms 1"is defined and associated to a
RECATNet in order to describe the termination conditions (i.e.
final markings) of the created threads. This family is indexed
by a finite set / whose items are called termination indexes.
This set is simply deduced from the enumeration of all the
defined final markings. So, if a thread reaches a final marking
1i (with i € I), it terminates aborting its whole descent of
threads. Then, it produces (in the token game of its father) and
for the abstract transition #,, which gave birth to it, the
multiset of tokens ICT(p', t.s, i) in the output place p’ of 7.
Such a firing is called a cut step and denoted 7 (with i € I). An
arc from an abstract transition 7, to its output place p' is
labeled by the following algebraic expression: <i> ICT(p', tus,
7). Such an arc can be omitted if the term ICT(p’, t,s, i) is null.
Note that if a cut step occurs in the root of the tree of threads,
one obtains the empty tree denoted L.

IC (p, toy CT(p', ter) .
O TC(teh)_>O p'is

DT,) tete {(tuvsis 1), (tavsms K, -}
Fig. 3. A generic elementary transition

p:s

-- The behavior of an elementary transition ¢, is twofold and
depends on a partial function K which associates to it a set of
abstract transitions to interrupt and for each of these transitions
a termination index. In the graphical representation of a
RECATNet, the name of an elementary transition ¢, is
followed by the set K(f,) when this set in non empty.
Basically, if a thread fires an elementary transition ¢, it
updates its internal marking as a transition of ordinary
ECATNets. Moreover, if the set specified by K is non empty,
the firing of this elementary transition performs the appropriate
cut step to each subtree generated by the abstract transitions
specified by K (depending on the termination index associated
to it).

Definition (Recursive ECATNets). A Recursive ECATNet is a
tuple RECATNet = (ECATNet, I, Y, K, ICT) where :

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

-~ T =Tus T, (U denotes the disjoint union) is the set of
RECATNets transitions, partitioned into abstract and
elementary ones;

-- [is a finite set of indexes; 1"is a family, indexed by 7, of
boolean terms defined in order to describe the termination
conditions of threads. These conditions can be specified by a
system of linear inequalities or equalities on the places
marking (We require that Spec = (2, E) is a many sorted
algebra with finite number of sorts).

-- K: Ty — Tu x 1, is a partial function which associates to
an elementary transition the set of interrupted abstract
transitions and their associated termination index.

-~ ICT: P x Tus x I > CATdas(E, X), (Indexed Created
Tokens). The created tokens in the output places of an abstract
transition depend on the termination index of the final marking
reached in the generated thread child.

III. RECATNETS-BASED MODELING OF FLEXIBLE AUTOMATED
PRODUCTION WORKFLOWS

In production systems, manufacturing processes of each part
consist in sequences of operations, each of which must be
processed during an uninterrupted time period on a given
machine, in order to transform raw materials into finished (or
semi-finished) goods. During the production run, disturbances
in manufacturing processes have to be handled in order to
minimize the unavailability of the system [17]. These
disturbances are caused by the occurrence of exceptions from
internal or external environments such as machine breakdown,
unavailability of operators or materials, violation of delays,
low quality productions, modification or cancellation of a
manufacturing order. Therefore, the specified workflows for
manufacturing process automation should be flexible enough
to react rapidly to the occurrence of failures that degrades the
original production plan and also to create plans that anticipate
the occurrence of disturbances in order to minimise their
effects [13]. For this purpose, a method is proposed in this
paper based on our model, namely, recursive ECATNets for
the modeling of flexible automated production workflows.
Recursive ECATNets offer a powerful means to deal with
dynamic structural aspects of systems. This is handled via
mechanisms for a direct modeling of dynamic creation and
suppression of processes. In a RECATNet based workflow
model of a production system, transitions represent tasks and
events occurring in a manufacturing process (leading to
changes in the states of objects or the status of operations).
RECATNets offer a natural way to define and manage
advanced data structures (specifying information on the status
of operations and internal states of manipulated objects) of
production systems via the algebraic specifications. Moreover,
transitions in a RECATNet have the ability to check for
context conditions: positive contextual conditions (known as
read arc) and negative contextual conditions (also called
inhibitor arcs). This ability allows to model, faithfully, the
different kinds of complex causal dependencies arising among
events encountered in manufacturing processes dealing with
e.g. shared resources [18] and priority. Recursive ECATNets

may be used to specify flexible automated production
workflows whose structures can be modified, extended or
reduced dynamically during their execution. Two types of
tasks are introduced in workflow processes at this end:
elementary tasks (modelled by elementary transitions) and
abstract tasks (modelled by abstract transitions, whose
execution generates dynamically, in a lower level thread, a new
operation plan from the previous one). The exceptional
situations which may occur, during the execution of a plan, can
be reflected (in this plan) by the firings of abstract transitions
(i.e. dynamic creation of threads) or by the firing of cut steps
executed when the associated final markings are reached or
when extended elementary transitions are fired. So, a
production process may handle exceptions by generating a new
operation plan or by terminating the current process. A
RECATNet-based workflow model of a production system is
depicted in Fig. 4. In this example, a company, distributed over
many sites, manufactures a number of products (Prod,,...,
Prod,), at request. The workflow covers the process from the
reception of the manufacturing order at the shop floor level to
the production completion of the ordered parts. Note that, for
notation convenience, the multiset /C(p, ¢) (or DT(p, t)) is
omitted in the graphical representation of RECATNets, when
IC(p, t) = DT(p, f). Also, the term ¢ is noted instead of the
equivalence class of the term [£]. The initial state of this net is a
tree containing a single thread (i.e. the root thread) with a
token (N#, ListParts) in the place “OrderReceived”. This token
represents the waiting manufacturing order which contains the
order ID number and the list of ordered parts. Each element of
this list consists in a couple (Prld, qty) representing,
respectively, the ordered part ID number and the requested
quantity for this part. The workflow process starts by the firing
of the transition “HandelOrder” (i.e. when a new
manufacturing order is received at the shop floor). Then, each
ordered part is considered individually, following their order of
priority (i.e. the transition “HandelParts” returns the head of
the list ListParts). For each couple (Prld, qty) produced by the
transition “HandelParts”, the abstract transition “StartFab” is
enabled. Each firing of this last one, for a token (Prld, qty),
initialises an instance of the specific manufacturing process
sequence associated to the part Prld (the sequence of
operations to be performed on lots in order to manufacture this
product). In fact, a new thread son is created dynamically in
the tree of threads with the initial marking associated to the
abstract transition “StartFab”. This initial marking depends on
the consumed token (Prld, qty) such that the initialised
manufacturing process at each firing of “StarFab” corresponds
to the appropriate part (Prld). Note that an instance of a
manufacturing process sequence of a part Prld is recognized as
a job to manufacture a batch of identical discrete part items of
Prld (qty being the size of this batch). Due to the space
limitation, only the manufacturing process sequence associated
to the part (Prodl) is represented in Fig. 4. In this example, the
production system is distributed over a number of areas;
consequently, different production plans or instances of the
same production plan (to manufacture a part) may run in
parallel in the shop floor. In order to manufacture parts

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

OrderReceived

(N#, ListPart)’

HandelOrder (N#, emptyList, Ln(ListPart))"

[ListParts]”

OrderReady

ProcProd,, IfCond(PrId=Prodn, Qty)} ®

ProcProd,, IfCond(PrId=Prod1, Qty)% ®...0
<Prod.PrId>

ProcProd,;

qty*¢

. 'EndProdl

Prod

LoadPart

<0> ok

Failure

<Failurel,(M(PartOpl), |M(Nbr]nt) | »>®

Failure0,M((PartLoading)+M(PartUnloading)>
Failure2, (M(PartOp2), | M(NbrInt) | >

ok

Alternativel — Nprint

Failurel

(qty, nbr)"

:l Diagnostic

(qty, nbr)’ B
(qty,\gbr)

(qty, nbr)"
Failure2

[(N#,Insert(Parts, List),Nbr)] AbortPlan [@r <4 |Retouch [nbr=4] LoadPart
LInsert(Parts,List),Nbr’ ty, nbr
(qty, nbr)” (oo (aty, nbn) @, nbr
& & (Partr, d PartLoadin;
arisMereed &I Diagnostic PlaniCancelled artRepaire O ¢
¢(5. nbr) (qty, nbr)” ¢ (qty, nbr)"
qty, nbr,
. RedoOp1 op3
i i N ty, nbi
(N# List, Nbr)” N#List, Nor) (aty. I:V (q\&ﬂbr (qty, nbr)’ (aty, nbr. aty. “br)¢
Op3Proc
" LoadPart p.
((StartFab, 6)) AbortPlan____] [wbr < JRetouch (qty. nbr)
(N#, List, Nbr, Aborted) N#, List, Nbr, Completed) (aty, nbr)¢ (qty, nb% (qty, Hbl’)¢ UnloadPart
e PartRepaired Partloading (qty, nbr)
FahS/nppLd Plan2Cancelled N Q artUnloadin
(qty, nbr) (qty, nbr) g
(N#, List, Nbr, Aborted)” RedoOp2 Op4 @y, by
(qty, nbr’ b .
Compensate/Archive aty (qty, nbr; 55 Terminate
Ord s
e Plan2resumed OOP 4Proc ¢
(N#, List, Nbr, Aborted) qty, nbr) Unloadpart
&I nloadPar nati
Yo: M(Planlresumed) = (qty, nbr) v M(Plan2resumed) =(qty, nbr) PlanlAlternative

Y,: M(Plan]cancelled) = (qty, nbr)v M(Plan2cancelled) = (qty,nbr)

T,: M(Planl Alternative) = (qty, nbr) v
M(Plan2Alternative) = (qty, nbr)

Y5: (M(EndProd,) = (qty) v ...
M(Prod)= Prodld

Y,: (M(Alternative,) = (qty) v ...
M(Prod)= ProdId

Ys: (M(Abort)) = (qty) v ...

M(Prod)= Prodld
Y,: false

OrderArchived

v M(EndProd,) = (qty)) A

(qty, nbr,
artUnloading
(qty, nbr)'
Terminate
v M(Alternative,) = (qty)) A (atys nbr)¢

v M(Abort,) = (qty)) A

Plan2Alternative

Fig. 4. A RECATNet based workflow model of a flexible production process.

satisfying quality and due time, the shop floor controls all the
steps of the production plans. This control is modelled in the
manufacturing process of the part (prodl) by the abstract
transition “Failure” which is trigged by the external
environment when a failure occurs during the production of a
part (prodl). The initial marking associated to this abstract
transition is parameterised. So when the transition “Failure” is
fired, the running manufacturing process is frozen and a
recovery process is initialised (created as a new thread in the
tree of threads) which depends on the current state of the
manufacturing process (i.e. the running operation) when the
breakdown is detected. Only the recovery processes which

correspond to the handling of exceptions occurring during the
processing of the operations “opl” and “op2” are represented
in Fig. 4 (due to the space constraints). These last ones suggest
recovery treatments, depending on the state of the produced
parts (if a physical damage is identified on the manufactured
parts or not). For instance, the recovery process associated to
the operation “opl” suggests, either, (1) to cancel the running
process, (2) to redo the operation “opl” after reparation of the
part and to resume, afterward, the interrupted manufacturing
process or (3) to initialise an alternative manufacturing process
to produce an alternative version of the part, after reparation.
Many faults may be detected during the production of a part.

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

The number of tolerated interruptions resulting from the
detection of a fault is limited to 3 (three) after what the part is
considered as a rubbish (waste) and has to be removed. The
initial state associated to the transition “Failure” is also
parameterised by the number of interruptions occurring during
the manufacturing process of the part via the term
M(NbrInt)’ which returns the number of token in the place
“NbrInt”. The completion of this recovery process is indicated
by a token (qty, nbr) in one of the places “Plan;Cancelled”,
“Plan;Resumed” or “Plan;Alternative”. In this case, a cut step is
executed at this level of recursion (the corresponding thread is
aborted from the tree) and depending on the final marking
reached in the recovery process (i.e. Yy, Y| or Y5) the places
“Resume” and “NbrInt”, the place “Abort” or the place
“Alternative”, respectively, are marked in the previous
recursion level. Consequently, the interrupted manufacturing
process may resume its execution or may stop it. The
manufacturing process sequence terminates if one of the
following final markings, Y;, Y4 or Ys, is reached. Then,
another cut step is executed (i.e. the thread is aborted) at this
level of the tree and, depending on the index of this termination
(i.e. <3>, <4> or <5>), the outputs of the abstract transition
“StartFab” are created (i.e. a token (Prld, qty, Comp), (Prld,
qty, Alt) or (Prld, qty, Reb), respectively, is produced in the
place “ProdResult” at the root level of the three of threads).
The processing of the manufacturing order terminates when all
the ordered parts are completed (i.e. In(List) = Nbr, the length
of the list of the completed parts corresponds to the length of
the ordered parts). Furthermore, during the processing of the
order, the shop floor has the possibility to stop the fabrication
of the ordered parts (by executing the task “StopFab”) as long
as the corresponding order is non completed, if the quality of
the completed parts of this order is exceptionally evaluated
below the tolerated threshold (i.e. the quantity of waste
products is superior to the third of the quantity to be produced.
This condition is evaluated by the function LowQIf). Note that
“StopFab” is an extended elementary transition (the associated
list of interrupted abstract transitions is not empty). It interrupts
the abstract transition “StartFab” with the termination index
<6>. Consequently, when the transition “StopFab” is fired, the
threads generated by the transition “StartFab” are aborted and a
token (N, list, Nbr, Aborted) is produced in the place
“FabStopped”. In fact, all the running manufacturing processes
(corresponding to the parts currently manufactured) are
stopped and all the tokens of the place “PartsHandled”
(corresponding to the parts waiting to be produced) are
removed (note that IC(PartsHandled, StopFab)=@" and
DT(PartsHandled, StopFab)=M(PartsHandled,)). After that, the
shop floor executes compensation operations for the stopped
manufacturing processes. No token is produced in the output
place of “StartFab”, when it is interrupted by the elementary
transition “StopFab”. An equivalent modeling of the flexible
structure of this workflow with other high level Petri nets (e.g.
colored Petri nets) would be very complicated. The resulting
net, for the modeling of the cancellation of the running
manufacturing processes, for instance, would contain
spaghetti-like arcs to remove tokens from all combinations of

all places [2]. Note that with rewriting semantics given to
RECATNets, the concurrent execution of different running
manufacturing or recovery processes (independently in
different production areas) is well described.

IV. RECURSIVE ECATNETS SEMANTICS IN THE CONDITIONAL
REWRITING LOGIC FRAMEWORK

In this section, we show how RECATNets semantics is
naturally expressed in terms of conditional rewriting logic.
Consequently, we can benefit from the use of the Maude
system [7] (a high-performance interpreter and language based
on rewriting logic) as a simulation environment for
RECATNets where the models can also be analysed and model
checked. For a more detailed description on rewrite logic
definitions, interested readers may refer to [5]. In what follows
we adopt Maude syntax to present specific equational or
rewrite theories.

A. RECATNets Semantics in terms of rewriting logic

The structure of the state space: The global distributed state
of a RECATNet is described as a dynamical tree Tr of threads
marking. Each thread (node) 7% of the tree 7r is described by a
term [Myy, tus, ThreadChilds] of sort Thread, where: My,
represents the marking of the thread T/ which is expressed as
multi-sets of pairs of the form <p,[m]e>, where p is a place of
this thread and [m]e a multi-set of algebraic terms. The
operator ® denotes the multi-set union on the pairs <p, [m]e>.
The sub-term ¢, represents the name of the abstract transition
whose firing (in the thread father) gave birth to the thread 7h.
Note that the root thread is not generated by any abstract
transition (the abstract transition which gave birth to the root
thread is, then, represented by the constant nullTrans). The
sub-term ThreadChilds represents the threads generated by this
thread Th in the current tree 7r. They are described as a finite
multiset of terms of sort Thread. The constant nullThread
represents the empty thread and the operator _ _ (the underline
indicates the position of the parameter) is the corresponding
multiset union operator which is associative, commutative and
has the constant null/Thread as the identity element.

fmod THREAD is protecting Marking .

sorts Thread Trans TransAbs . subsort TransAbs < Trans .

op nullTrans :-> Trans .

op nullThread :-> Thread .*** The empty thread and the empty Tree (L)

op [_,_,] Marking TransAbs Thread -> Thread .

op _ _: Thread Thread -> Thread [assoc comm id : nullThread] .

op Initial : Making -> Thread .

var T :TransAbs. var L: List. vars mth mthf: Thread .

var M : Marking . vars Minit Moutput mts : multiset .

Eq Initial (M) = [M, nullTrans, nullThread] .

sk ke sk o sk ke ok e ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk sk sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk sk sk skok ok

op DeleteThread : Thread List -> Thread .

eq DeleteThread(nullThread, L) = nullThread .

eq DeleteThread(Thf [M, T, Th], L) =if find(T,L) then
DeleteThread(Thf, L) else [M, T, Th] DeleteThread(Thf, L) fi .

sk 3k sk 3k sk ok sk sk sk sk sk sk sk sk sk stk skeske stk stk sk sk sk sk stk sk sk sk kst sk sk stk stk stk skl skokoskokoskokskokskokskokskok
op CreateTokens : Multiset Thread Trans Multiset -> Multiset .

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

eq CreateTokens(Minit, nullThread, T, Moutput)= Moutput.

eq CreateTokens(Minit, Thf [M, T, Th], T, Moutput) = createTokens(Minit,
Thf, T, Moutput @ Minit).

eq CreateTokens(Minit, Thf [M, Tf, Th], T, Moutput) = createTokens(Minit,
Thf, T, Moutput) [owise] . endfm

RECATNets rewrite rules: Each transition (abstract or
elementary) and each cut step in a RECATNet RN is formally
expressed as a rewrite rule. These rewrite rules are partitioned
into four distinct types which are the abstract rules, the
elementary rules, the extended elementary rules and the
pruning rules. The general form of these rules is given as
follows:

**% Elementary rules: For each elementary transition te, with K(te)=
erl [te]; <p, mp @ DT(p,) > ® <p’, mp™> —; <p, mp > & <p’, mp’ ® CT(p’,
t)> if (Nbr(mp’ @ CT(p', t)) < Cap(p’)) and (InputCond) and (TC(t)) .

**#% Extended elementary rules: For each elementary transition with

kK (ter) defined,(i.e. K(ter)={(tabsjsl)(tabsmsK), ... }) FH ks sk

crl [te]: [M & <p, mp @ DT(p, t) > ® <p’, mp/ > & <p’j, mp’; > @ <p’m, mp'n >
-, T, mTh] > [M ® <p, mp>® <p/,mp' ® CT(p’,)> ® <p';, mp';®
CreateTokens(ICT(p'j, tasj, 1), mTh, tansj, Ems)> & <p'y, mp'n @
CreateTokens(ICT(p'm, tabsm, K), mTh, tapsm, Ems)> ..., T, DeleteThread(mTh,
tabsj 33 tabsm 3 --.)] if (InputCond) and (Nbr(mp’ @ CT(p’,t))<Cap(p’)) and

(TC(1)) -
**** Abstract mles sfe sfe e 3 sk sk sfe sfe sfe ke e sk sk sfe sfe she ke ke sk sk sfe sk ske ke ke sk sk sk she sk ke sk sk skeoske skl ok skeskeoskosk
erl [tasi]:[M ®<p, mp @ DT(p, t)>, T, mTh]->[M & <p, mp>, T, mTh

[<p",CT(p" tasi)> ® <p1, Ems> ®...® <p,, Ems>, tu, nullThread]] if
[(InputCond) and (TC(t)) .

ok Pruning rules sk 3k sk sk sk ok sk sk sk sk sk sk sk sk sk skl skosk sk stk stk skok sk skok skokoskok skok ok skokk

**% A pruning rule associated to a cut step likely to occur in a thread (different
*** from the root),generated by an abstract transition ty:

erl [ti]: [Mf® <p’, mp">, Tf,[M ® <pfinat, MPfina™,tavsj mTh] mThf]>[Mf ®
<p’, mp’ @ ICT(p’,tavsj1)>, Tf, mThf] if (Y;) and (Nbr (mp’ @ ICT(p’, tusj,
1)) < Cap(p")).

**% A pruning rule associated to a cut step likely to occur in the root thread,
**%* has the form
crl [1i]:[M ®<pfinal, Mppnar>, nullTrans, mTh] — nullThread if (Yi) .

The component InputCond is determined from the expression
IC(p, 1) as follows (where mp is the marking of the input place
p of t):(InputCond = mp = if IC(p, 1) = empt

mp=a if IC(p, f)=[a]’

a Inclu mp if IC(p, H)=[a]"

not (3 Inclu mp) if IC(p, 1) = [5]

Example: In what follows, we give one rule from the rewrite
theory MANUFACTURE which describes the behavior of the
RECATNet given in Fig. 4. Since, we have the case [IC(p,
t)]e = [DT(p, t)]e, for the majority of the transitions (elementary
or abstract) ¢ of this RECATNet, we choose to simplify the
form of the associated rewrite rules as follows:

mod MANUFACTURE is protecting THREAD SPEC.

subsort Expression < Tokens. subsort ExpressionList < Tokens .
vars M Mf: Marking . vars T Tf: Trans . vars mTh mThf: Thread .
vars mts : Multiset . vars N ProdId : Data. vars Nbr Qty: Nat .
vars List L : ExpressionList. ops StartFab Failure :-> TransAbs .
ops OrderReceived Plan2 Alternative :-> Place .

sk 3k sk ok sk sk ok skosk skok skok abstract rules sk 3k sk sk sk ok sk sk sk sk sk skosk sk sk skosk stk skok skokoskokskokoskokskorskok

rl [StartFab] : [M ® <ProdParts , mts @ (ProdId , Qty) >, T, Th] —

[M ® <ProdParts , mts>, T, Th [<ProcProdl, IfCond(Prodld == Prod1, Qty)>)
® ...® <ProcProdn , IfCond(Prodld == Prodn , Qty)> ® <Prod , ProdId>,
StartFab, nullThread]] .

endm
B. RECATNets Analysis using the Maude System

Since we express each RECATNet semantics in terms of
rewriting logic [5], a RECATNet theory will constitute an
executable specification of the concurrent system that it
represents, directly used for formal analysis and verification
[10]. In the framework of this work, we use as platform, the
version 2.1.1 of the Maude system under Linux. The Maude
system has a collection of formal tools supporting simulation,
accessibility analysis and various forms of logical reasoning to
check program properties like the LTL (linear temporal logic)
Model-Checker [16] which allows to prove liveness properties
and safety properties related to (finite) workflow schemas [19].

Simulation: The simulation is performed as an interactive
(i.e. user-controlled) execution of the workflow [19]. In Fig. 5,
an execution for the previous example is given in Maude
environment using in the first case the command ‘rewrite’ and
in the second case the command ‘frewrite’. We remind that the
‘rewrite’ and ‘frewrite’ commands of Maude rewrite a given
expression, each of them using its own strategy, until no more
rules can be applied. Maude allows the user to specify the
maximum number (enclosed in brackets) of rule applications
when using these two commands. This ability is useful in
debugging a model or in the case where such a computation
may not terminate.

[ET Stephane@imp-12-2-45:~/Bureau/awatef/maude-windows/maude-windows |

Fichier Edition Affichage Terminal Onglets Aide
N/
--- Welcome to Maude ---
ALIARAARARARURNARTAN
Maude 2.0.1 built: Aug 1 2003 17:25:59 -
Copyright 1997-2003 SRI International
Thu Jul 19 13:36:21 2607
Unable to expand ~/.teclarc (User '* doesn't exist.).
Maude> in manufacture.maude

fmod LIST

fmod MARKING

mod THREAD

fmod SPEC

mod MANUFACTURE

rewrite [1] in MANUFACTURE : Initial(< OrderReceived,Numel,, (Prodl,66) ; Prodl,

rewrites: 4

result Thread: [< Partserged,Nun@l, emptyList,,2 > < OrderReady, (Prodl,60) :
Prodl,80 > < Ordertead Ems > < ProdResult,Ems >,nullTrans,nullThread]

rewrite in MANUFACTURE : Initial(< OrderReceived,Num@l,,(Prodl,6@) ; Prodl,8e
>) .

rewrites: 431
result Thread: [< OrderArchived,Num@l,,(Prodl,68,reb},,2, ,Aborted >,nullTrans,
nullThread]

frewrite in MANUFACTURE : Initial(< OrderReceived,Numel,,(Prod1,60) ; (Prodl,
80) ; (Prodl,4e) ; Prodl,50 >) .

rewrites: 542

result Thread: [< OrderArchived,Numel,,((Prod1,8e,Comp) ; (Prodl,60,Comp) ; (
Prod1,50,Conp) ; Prodl,40,Comp),,4,,Completed >,nullTrans,nullThread] =

Fig. 5. Execution of the flexible production workflow example under Maude
environment.

Proper Termination Checking Using Accessibility
Analysis: A typical requirement for any workflow schema is
that: (1) the process eventually terminates and (2) there must
be no deadlock (a state different from the expected final state
where the workflow execution come to a halt). In the workflow
depicted in Fig. 4, this requirement corresponds to the presence
of only one token in the place Orderdrchived at the root thread
(a root thread which has no thread child). By using the
command ‘search’ of Maude system, we can know if a certain

4th International Conference on Computer Integrated Manufacturing CIP’2007

03-04 November 2007

state is reachable or not from a given initial state. One can
impose a bound to the command search and so specifying a
limit to the number of solutions searched for. In our example,
we want to check if starting from the initial marking (one token
in the place OrderReceived), it is possible to reach the workflow
final marking. The command given in what follows allows to
obtain all the terminal states (states which cannot be rewritten
further) reachable from the initial state (e.g. one token (NumO1 ,,
(Prod1 , 150)) in the place OrderReceived). In this command we
precise a general final state which, in the case of recursive
ECATNet, is of the form Th:Thread:

search in MANUFACTURE : Initial(< OrderReceived , (NumO1 ,,
(Prodl , 150)) >) =>! Th:Thread .

= Stephane@imp-12-2-43:~/Bureau/awatef/maude-windows/maude-windows =5

Fichier Edition Affichage Terminal Onglets Aide
&5}

search in MANUFACTURE : Initial(< OrderReceived Num@l,,Prodl, 150 >) =>! Th .
solution 1 (state 48)
states: 61 rewrites: 731
Th --> [< orderArchived,Numel,, (Prodl,15@,reb),,1,,Completed >,nullTrans,

nullThread]
solution 2 (state 52)
states: 63 rewrites: 767
Th --> [< orderArchived,Numel,, (Prodl,15@,Comp),,1,,Completed >,nullTrans,

nullThread]
Solution 3 (state 80)
states: 89 rewrites: 1177
Th --> [< orderArchived,Numel,, (Prodl,150,ALt),,1,,Completed >,nullTrans,

nullThread]
No more solutions.
states: 133 rewrites: 1981
Maude> | [~

Fig. 6. Termination checking of the flexible production workflow
example under Maude environment.
From the obtained results (see Fig. 6), we deduce that the
workflow process terminates properly i.e. the expected final
state can be reached and moreover there is no deadlock i.e.
terminal state not expected. If one want to see the sequence of
rewrites that allows us to reach one of these states (for instance
the state 48), it’s enough to write after this request, the
following command: ‘show path 48’ . We can also obtain all
the accessibility graph of this workflow (from the given initial
state) using the command ‘show search graph’ or using the
following command:
search in MANUFACTURE : Initial(< OrderReceived ,
(NumO1 ,, (Prodl , 150))) >) =>* Th:Thread .

Checking Workflow Properties Using Maude Model-
Checker: We can use the Maude Model-Checker to prove
general or domain specific properties (expressed as LTL
formula) related to a workflow system (when the set of states
reachable from an initial state is finite). Note that, thanks to the
rewriting logic reflective nature, well supported by the Maude
engine (i.e. the capability to represent rewrite specifications as
objects and control their execution at the meta level), different
rewrite strategies can be implemented for RECATNets
verification (in the case of infinite state system). This particular
feature is not the subject of this paper. In what follows we
apply the Model-Checker of Maude system to prove some
properties related to our flexible production workflow example
(which is finite).

Property 1. 1f one produced lot is rejected (considered as a
waste), all the production workflow is stopped and the process
is compensated. This property is formulated as the LTL
formula: [] (One-Lot-Rejected -> <> Fab-Stopped) (see Fig. 7).
The proposition One-Lot-Rejected is valid, if one token of the

form (Prodld, Qty, reb) is in the place ProdResult (at the root
thread). The proposition Fab-Stopped is valid, if the transition
Stop-Fab is executed. By applying Maude Model-Checker
(with the initial state <OrderReceived , (NumO1 ,, ((Prodl , 60) ;
(Prod1, 80) ; (Prodl, 50)) >) we obtained the expected result. This
last one denotes that the property is false. In this case, Maude
Model-Checker returns a counterexample (an execution trace
that violates the property)

\'_ Stephane@imp-12-2-43:~/Bureau/awatef/maude-windows/maude-windows /= @|x||
Fichier Edition Affichage Terminal Onglets Aide

mod MANUFACTURE -PREDICATS

mod MANUFACTURE - CHECK D

reduce in MANUFACTURE-CHECK :
Fab-Stopped)) .

rewrites: 1475

result ModelCheckResult: counterexample({[< OrderReceived,Num@l,, (Prodl,6@) ; (
Prodl,80@) ; Prodl,5@ >,nullTrans,nullThread], '‘HandelOrder} {[< PartsMerged,
Num@l, ,emptylist,,3 > < OrderReady, (Prod1,60) ; (Prodl,88) ; Prodl,50 > <
OrderHead,Ems > < ProdResult,Ems >,nullTrans,nullThread], 'HandelParts} {[<
PartsMerged,Num@l, ,emptyList,,3 > < OrderReady, (Prodl,88) ; Prodl,50 > <
OrderHead,Prodl,60 > < ProdResult,Ems >,nullTrans,nullThread], ‘HandelParts} {[<
PartsMerged,Numel, ,emptyList,,3 > < OrderReady,Prod1,5@ > < OrderHead, (Prodl, [v]

Fig. 7. Verification of workflow properties using Maude LTL Model-Checker

modelCheck(initiall, [](One-Lot-Rejected -> <>

V. CONCLUSION

In this paper we have proposed a modeling approach based on
our model, namely, recursive ECATNets for the specification
of flexible workflows in manufacturing systems. Indeed, the
high level description of RECATNets is well-suited for
modeling workflows where the dynamic reconfiguration of
their structure is required. The proposed model is also
particularly adequate for handling the most advanced routing
constructs (flow patterns) [2]. The RECATNets semantics is
defined in the conditional rewriting logic framework [5].
Consequently, using a rewriting logic language implementation
such as the system Maude [7], it is possible to create rapid
prototype on which one can apply formal verification methods
such model checking technique.

REFERENCES

[1] W.M.P. van der Aalst and K.M. van Hee, Workflow Management:
Models, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros, “Workflow patterns,” Distributed and Parallel Databases, vol.
14, pp. 5-51, 2003.

[3] M. Bettaz and M. Maouche, “How to specify non determinism and true
concurrency with algebraic terms nets,” in LNCS, No 655, Springer-
Verlag, pp. 164-180, 1992.

[4] N. Zeghib, K. Barkaoui and M. Bettaz., “Contextual ECATNets
semantics in terms of conditional rewriting logic,” in Proc. 4th
ACS/IEEE Int. Conf. on Computer Systems and Application, UAE,
March 2006, pp. 936- 943.

[5] R. Bruni, J. Meseguer: Semantic foundations for generalized rewrite
theories. Theor. Comput. Sci. 360(1-3): 386-414 (2006).

[6] S. Haddad and D. Poitrenaud, “Modeling and analyzing systems with
recursive Petri nets,” in Proc. 5th Workshop on Discrete Event Systems ,
Belgium, Kluwer Academic Publishers, August 2000, pp. 449-458.

[77 M. Clavel and al. “Maude manuel” (Version2.1),
http://maude.cs.uiuc.edu.

[8] A. Hicheur, K. Barkaoui, N. Boudiaf, Modeling Workflows with
Recursive ECATNets. In Proc. of the 8th SYNASC'06, IEEE Computer
Society , pp. 389-398, 2006.

[9]1 J.J Halliday, S.K. Shrivastava, S.M. Wheater, Flexible workflow
management in the OPENflow system, in fifth IEEE International
Enterprise Distributed Object Computing Conference, 2001.

2004,

4th International Conference on Computer Integrated Manufacturing CIP’2007 03-04 November 2007

[10] K. Barkaoui, A. Hicheur, a natural semantics for RECATNets in terms of
conditional rewriting logic. Internal Technical Report, Cedric Lab.
February, 2007

[11] M. Dong, and F. Chen, Petri Net-Based Workflow Modeling and
Analysis of the Integrated Manufacturing Business Process, Int. J.
Advanced Manufacturing Technology, 2005, 26 (9-10), 1163-1172.

[12] R.Y.K. Fung, Y.M. Au, and A.W.H. IP, Petri-net Based Workflow
Management Systems for In-process Control in a Plastic Processing
Plant, 2003, J. of Materials Processing Technology, 139, 302-309.

[13] Y. He, H. Yang, W. He, W. Zhang, X. He, Flexible Workflow Driven
Job Shop Manufacturing Execution and Automation Based on Multi
Agent System, Proc. of the IEEE/WIC/ACM (IAT'06), 2006, USA, 695-
699.

[14] C. Hagen, G. Alonso, Exception Handling in Workflow Management
Systems, 2000, IEEE Transactions on Software Engineering (TSE) 26,
943-958.

[15] Riascos, L.A.M., Moscato, L. A. and Miyagi, P.E., 2004, Detection and
treatment of faults in manufacturing systems based on Petri Nets, J. Braz.
Soc. Mech. Sci. & Eng., 26(3), 280-289.

[16] S. Eker, J. Meseguer and A. Sridharanarayana, The Maude LTL Model
Checker and its Implementation . in Proc. of the 10th SPIN Workshop
LNCS 2648. May,2003. Pages 230-234.

[17] Bruccoleri M., La Diega S.N. and Perrone G., 2003, An object oriented
approach for flexible manufacturing control systems analysis and design
using the unified modeling language, IntJ. Flexible Manuf. Systems, 15,
195-216.

[18] K Barkaoui, L. Petrucci, Structural Analysis of Workflow Nets with
Shared Resources, Proc. Workflow Management Net-based Concepts,
Models, Techniques and Tools (WFM'98), Eindhoven, 82-95.

[19] C. Karamanolis, D. Giannakopoulou, J. Magee, S.M. Wheater, "Model
Checking of Workflow Schemas," edoc, p. 170, Fourth International
Enterprise Distributed Object Computing Conference (EDOC'00), 2000.

