

Systolic FIR filter Based FPGA

A. GOUGAM and D. BENAZZOUZ
University M’Hamed Bougara - Boumerdes, Algeria.

Solids mechanical and systems laboratory (LMSS)
Signals and systems laboratory (LSS).

ahgougam@yahoo.fr, dbenazzouz@yahoo.fr

Abstract: In this paper, we first review in detail the basic
building blocks of reconfigurable devices, essentially, the field-
programmable gate arrays (FPGAs), then we describes a high-
speed, reconfigurable, Systolic FIR filter design implemented in
the Virtex-II series of FPGAs. The VHDL description of this
filter is used for simulation and EDIF for implementation using
Xilinx's place and route tools. The VHDL simulation shows that
the filter behaves as expected

I. INTRODUCTION

As field programmable gate array (FPGA)
technology has steadily improved, FPGAs have become
alternatives to other technology implementations for high-
speed classes of digital signal processing (DSP) applications.
In this paper, we first review in detail the basic building
blocks of reconfigurable devices, essentially, the field-
programmable gate arrays (FPGAs), then we describes a
high-speed, reconfigurable, Systolic FIR filter design
implemented in the Virtex-II series of FPGAs.

II REPROGRAMMABLE COMPUTING AND THE
FPGA ARCHITECTURE

Reconfigurable computing (RC) is computation
using hardware that can adapt at the logic level to solve
specific problems. Figure 1a shows the implementation
spectrum in reconfigurable computing [1]. The spectrum is
bounded by three axes symbolising performances, flexibility
and cost. The figure clearly shows that ASIC gives high
performance at cost of inflexibility, processor is very flexible
but not tuned to the application and that RC hardware
(FPGA) is a nice compromise.

 Figure 1a: Implementation Spectrum

Reconfigurable hardware can be classified according
to their granularity level, which are: the system level, the
functional level and the logic level.

At system level the reconfiguration correspond to the
programming of the computing resources such the different
processors and memory space.

At functional level, the reconfiguration focuses on
the interconnections between resources such as the different
arithmetic modules.

Finally, at logic level the reconfiguration deals with
the different L.U.Ts and the network of interconnects at bit
level.

In reconfigurable computing we distinguish two
types of reconfiguration as shown in figure 1b:

• Static reconfiguration : the application is not running
• Dynamic reconfiguration – application is modified

in response to changing environmental issues.

mailto:ahgougam@yahoo.fr
mailto:dbenazzouz@yahoo.fr

Figure 1b: Reconfiguration types

The basic structure of an FPGAs is array-based,
meaning that each chip comprises a two dimensional array of
logic blocks that can be interconnected via horizontal and
vertical routing channels. An illustration of this type of
architecture is shown in Figure 2.

Figure 2: FPGA: Basic Structure

The features of a logic block (called a Configurable
Logic Block (CLB) by Xilinx) shown in figure 3 is based on
look-up tables (LUTs) . A LUT is a small one bit wide
memory array, where the address lines for the memory are
inputs of the logic block and the one bit output from the
memory is the LUT output.

Figure 3: Configurable Logic Block (CLB)

Modern VLSI FPGAs architecture shown in figure 4 are
characterized by the integration of different building blocks
[2] such as:

- Logic cell (Combinational and Sequential) .
- Dedicated Arithmetic Logic, processors,
- Input/Ouput, JTAG, Gigabits transceiver blocks ,

Figure 4: FPGA with embedded system functionality

III SYSTOLIC FIR APPLICATIONS

Systolic system consists of an array of processing
elements (typically multiplier-accumulator chips) in a
pipeline structure that is used for applications such as image
and signal processing. The "systolic," introduced by H. T.
Kung of Carnegie-Mellon in 1978, refers to the rhythmic
transfer of data through the pipeline, like blood flowing
through the vascular system [3,4].

Systolic approach can speed up a compute-bound
computation in a relatively simple and inexpensive manner.
A systolic array in particular achieves higher computation
throughput without increasing memory bandwidth as shown
in figure 5.

Figure 5: systolic array throughput

One such application is the well known finite

impulse response (FIR) digital filter, also known as the
transversal filters or as a tapped delay line. The behavior of
the finite impulse response filter can be described by the
equation:

 (1)

where yt denotes the output at time t and xt represents the
input at time t and ak are the filter coefficients.

The processing element of the 1D semi systolic FIR
is shown in fig 5. The inner product processing element will
take as inputs an accumulated sum from previous processing
elements (yin), a filter coefficient (ai) and a sample value from
the input stream (xin) and return two values: the xin is passed
to xout and the yout is computed by performing the inner
product calculation and adding it to the accumulated sum.

yout = yin + ai * xin. (2)

An implementation for an inner product processor is
shown in figure 6. Both the x values and the accumulated
results flow from left to right. Registers are added at the
inputs and outputs for pipelining in a way that makes sure the
accumulated sums and x values stay in synch.

Figure 6: FIR processing element

An example of a four tap filter using this processing element
is shown in fig 6. This is formed by simply replicating the
processing element horizontally. The x input has to be
delayed by one clock tick to synchronise with the y inputs.
This filter has a much higher latency (8 ticks) than its direct
implementation counterpart (semi systolic filter).

Figure 7: A 4 taps full systolic FIR filters

VHDL description of this filter is used for

simulation and EDIF for implementation using Xilinx's place
and route tools. The VHDL simulation shows that the filter
behaves as expected as shown on figure 8, a serie of unsigned
number b[15:0] produced a same serie of filtered unsigned
numbers q[15:0] . The first filtered data output is produced
after the eigth clock pulse then, an output is produced every

clock pulse. The coefficients Wi, of the filter have been set to
1 for simplicity.

Figure 8 Simulation results using ISE 8i.

After configuration, ON CHIP debugging and
verification is performed using ChipScope™ Pro tools which
integrates logic analyzer hardware components with the target
design inside Xilinx Virtex™. The ChipScope Pro tools
communicate with these components and provides us with a
complete logic analyzer. Figure 9 shows a block diagram of a
ChipScope Pro system. We can place the ICON, ILA, cores
(collectively called the ChipScope Pro cores) into the design
by generating the cores with the ChipScope Pro Core
Generator and instantiating them into the VHDL source code.
The design is then placed and routed using the Xilinx ISE 8.1i
implementation tools. Next, we download the bitstream into
the device under test and analyzes

the design with the ChipScope Pro Analyzer
software.

Figure 9 block diagram of a ChipScope Pro .

IV CONCLUSION

Our study shows the suitability in using FPGAs for
spatially parallel applications such as systolic filters. By
illustrating a design methodology for digital filters, the

advantages of using FPGAs for digital signal processing
applications (DSP) are emphasized.

Finally, further works on this subject is being carried
out including :Making the filter parameters scalable as the

number of taps and the coefficients.Extending this
systolic FIR filter to real data acquisition.

- Comparing performances against existing optimized
filter implementation from Xilinx's Core Generator
in order to propose a real IP (Intellectual Property)
core for reuse .

V REFERENCES

[1] R. David , Architecture reconfigurable dynamiquement
pour applications mobiles ‘, Thèse ,Université de Rennes,
2003.
 [2] The Design Worrior’s Guide to FPGAs Devices, Tools,
and Flows. ISBN 0750676043, Mentor Graphics Corp, 2004,
[3] H.T Kung, C.E Leiserson, “ Systolic Array for VLSI ”,
Sparse Matrix Proc., 1979, pp. 256-282.
 [4] A GOUGAM, A FARAH. “Systolic Arrays via
dependancy graphs”. Journal of Technology (JOT), E.N.P El-
Harrach, 1994

