
4th International Conference on Computer Integrated Manufacturing CIP’2007 03-04 November 2007

An Integrated Strategy for Automatically Obtaining
Degraded Functionality Mode

Chouki Abderrezak

Department of computer science,
University of Batna, Algeria

chouki.abderrezak@gmail.com

Abstract- Our goal is to automatically define degraded

functionality mode in case of transient timing fault or processor
silent failure in embedded and real time systems. The proposed
solution is different from the previously proposed approaches in a
way that automatically defines degraded functionality mode to
tolerate faults. Our approach is an integrated strategy into static
real time scheduling algorithm to automatically obtain degraded
functionality mode. Multiple queues are used for different
importance levels. Activated task is placed in adequate queue
according to its importance. Running task is interrupted by more
important task, at the head of queue, which obtains its latest start
time. Results show that the proposed solution can tolerate faults
with automatically obtaining degraded functionality mode.

I. INTRODUCTION

Embedded systems account for a major part of critical
applications (space, aeronautic, nuclear…) as well public
applications (automotive, consumer, electronics…) [1].

Their main feature is critical real time, critical because the
failure of system’s component can lead to catastrophe.

 For this, dependability of such real time system must be
taken into account. A fundamental mechanism by which
dependability can be achieved is fault tolerance. Fault
tolerance in a real-time system implies that the system is able
to deliver correct in a timely manner even in the presence of
faults [7]. Levels of fault tolerance are:

• Full fault tolerance: the system continues to operate in the

presence of faults, albeit for a limited period, with no
significant loss of functionality or performance;

• Graceful Degradation: the system continues to operate in
the presence of errors, accepting a partial degradation of
functionality or performance during recovery or repair.

Most safety critical systems require full fault tolerance.

However, this solution failed in case where failure hypothesis
of the system are not respected, for example in presence of too
failure of processors in multiprocessor system. For this,
degraded functionality mode is necessary in such critical
system.

In this paper, we propose a strategy, which is called ADAF
(strategy to Automatically Define degrAded Functionality
mode), that automatically defines degraded functionality mode.
We do not address the scheduling, nor the placement of the

tasks as discussed in [1].our approach is an integrated strategy
into static real time scheduling algorithm to automatically
obtain degraded functionality mode.

The remainder of this paper is organized as follows. In the
next section we present related work. Next we describe our
proposed approach. Finally, an example and conclusion are
presented.

II. RELATED WORK

In the literature, we can identify two full fault tolerance
approaches:
• Hardware fault tolerance;
• Software fault tolerance.
Most hardware fault tolerance techniques based on hardware

redundancy are not preferred in embedded systems due to the
limited resources available .For this, software fault tolerance
approach increasingly used in embedded systems.
Software fault tolerance techniques are:
• TMR (Triple Modular Redundancy): multiple copies are

executed and error checking is achieved by comparing
after completion [1].

• PB (Primary/ Backup): the tasks are assumed to be
periodic and two instances of each task (a primary and a
backup) are scheduled on a single processor system [2],
[3], [10].

• PE (Primary/Exception): it is the same as PB method
except that exception handlers are executed instead of
backup programs [11].

Contrary to previously techniques, that use full fault

tolerance approach, we propose an automatic solution to define
degraded functionality mode to tolerate faults.

III. THE PROPOSED STRATEGY

In this section, we present the proposed strategy ADAF. As we
discussed earlier, full fault tolerance is used in previously
proposed techniques. The proposed solution is different from
the previously approaches in a way that can automatically
obtain degraded functionality mode to tolerate faults. The
ADAF consists of two steps, one offline and the second online:

4th International Conference on Computer Integrated Manufacturing CIP’2007 03-04 November 2007

1) Change of Deadline and determination of latest start

time of tasks (offline);
2) The scheduling strategy (online).

Table I provides some terms and their meanings that will be

used in the subsequent discussion.

TABLE I
 SYMBOLS AND THEIR MEANINGS

Symbol Meaning
Ci The worst case execution time of the task Ti

Di The deadline of the task Ti

Si The latest possible start time of the task Ti

Mi The importance of the task Ti

A. Change of Deadline and determination of latest start time

In the first step of ADAF, we change deadline and latest start
time of tasks to avoid case where a less important task retards
the more important task. We change deadline of the task Ti if
there is a task Tj with: Di + Cj > Dj.
The new deadline of Ti is: D’i = Dj - Cj.
The latest possible start time of the task Ti is calculated using
the following formula: Si = Min (Di , D’i) - Ci.

The first step of ADAF is formally described below:

The ADAF first step Algorithm
begin
 for each task Ti do
 D’i Di;
 end for
 for each two tasks (Ti, Tj) do
 if Di < Dj and Di + Cj > Dj then
 D’i Dj - Cj;
 end if
 end for
 for each task Ti do
 Si = Min (Di, D’i) - Ci
 end for

end

B. The scheduling strategy

In this section, we describe the second step of ADAF, which
is the more important, that automatically defines degraded
functionality mode. The second step is a scheduling strategy
that ignores less important tasks in case of timing faults or
processor silent failure. In this step, we assume that tasks are
scheduled offline using an ordinary static real time scheduling
algorithm.

In our strategy, we use multiple queues for different
importance levels. Each activated task is placed in adequate
queue according to its importance. The running task is
interrupted by more important task, at the head of queue, which
obtains its latest start time.

A static real time scheduling algorithm, with our integrated
strategy, is formally described below:

The static real time scheduling algorithm
begin
Schedule tasks using an ordinary static real time scheduling
algorithm;
Change deadline and determinate latest start time of tasks using
the ADAF first step algorithm;
Place scheduled tasks in queues according to its importance;
While exist tasks in queues do

Allocate the processor to the more important task at the head of
queue;
While not terminate currently running task do

If exist a more important task obtains its latest start time then
Interrupt currently running task;
Allocate the processor to the more important task at the head
of queue;

 end if
end while

end while
end

IV. AN EXAMPLE

In this section, an example is used to illustrate the
effectiveness of the proposed strategy. We discuss two cases of
failure: transient timing fault on single processor to show the
effectiveness of ADAF in centralized systems, and processor
silent failure on two processors system to show the advantages
of ADAF in distributed systems.

A. Transient timing faults on single processor
The following table shows an example of tasks, with its

worst case execution time (Ci), deadline (Di), importance (Mi),
and latest possible start time (Si), used to illustrate the
effectiveness of our proposed solution ADAF in case of
transient timing fault on single processor system.

 TABLE II

AN EXAMPLE OF TASKS
task Ci Di Mi Si

T1 5 12 3 7
T2 2 4 2 2
T3 1 3 1 2
T4 3 6 3 3

We assume that tasks are scheduled offline according to its

deadlines in order: T3, T2, T4 and T1. We use the ADAF first
step algorithm to change deadline and determinate the latest
start time of tasks. The result is shown in the following table.

TABLE III

NEW DEADLINE AND LATEST START TIME OF TASKS
task D’i Si

T1 12 7
T2 3 1
T3 1 0
T4 6 3

4th International Conference on Computer Integrated Manufacturing CIP’2007 03-04 November 2007

In the follow, the Gantt chart of scheduled tasks with ADAF
without faults.

Fig. 1. Gantt chart of scheduled tasks with ADAF without faults.

We assume that there is a timing fault t between 1 and 3 time
unit. The following Gantt chart presents scheduled tasks with
ADAF in case of the transient timing fault t on single processor
system.

Fig. 2. Gantt chart of scheduled tasks with ADAF in case of transient timing
fault on single processor system.

In case of the transient timing fault t, with using ADAF, Fig. 2
shows that T2 is ignored. We automatically obtain degraded
functionality mode with execution of tasks T1, T3 and T4.

B. Processor silent failure on two processors system
 This section describes an example in case of processor silent
failure on two processors system. We assume that the first
processor is allocated to tasks presented in Table II and the
second processor is allocated to tasks shown in the following
table.

TABLE IV
SET OF TASKS ASSIGNED TO THE SECOND PROCESSOR

task Ci Di Mi Si

T’1 3 6 2 3
T’2 2 4 3 2
T’3 3 10 1 7
T’4 2 8 2 6

 In case of second processor failure, tasks presented in the
Table IV are migrated to the first processor.
At first we change deadline and latest possible start time of
tasks presented in Table IV using ADAF first step algorithm.
The result of this step is shown in the following table.

TABLE V
NEW DEADLINES AND LATEST POSSIBLE START TIME OF TASKS ASSIGNED TO

THE SECOND PROCESSOR
task D’i Si

T’1 5 2
T’2 2 0
T’3 10 7
T’4 7 5

 T4

In case of second processor failure, and after migrate tasks; we
change deadline and latest start time of more important tasks.
In our example, Table VI shows new deadline and latest start
time of the more important tasks T1, T’2 and T4.

TABLE VI
NEW DEADLINES AND LATEST START TIME OF MORE IMPORTANT TASKS

task D’i Si

T1 12 7
T’2 3 1
T4 6 3

The following Gantt chart presents scheduled tasks with ADAF
in case of second processor silent failure on two processors
system.

Fig. 3. Gantt chart of scheduled tasks with ADAF in case of second processor
silent failure on two processors system.

In case of second processor silent failure, Fig. 3 shows only T ,
T , T and T’ are executed and the other tasks are ignored. We
automatically obtain degraded functionality mode with the
execution of tasks T , T , T and T’

1

3 4 2

1 3 4 2.

V. CONCLUSION AND FUTURE WORK

Critical real time is the main feature of embedded systems;
critical because the failure of system’s component can lead to
catastrophe. For this, dependability of such embedded system
must be taken into account from the beginning. A fundamental
mechanism by which dependability can be achieved is fault
tolerance.

 T3

 T2

 T1

 T4

 T4

 T3

 T2

 T’4

 T’3

 T’2

 T3

 T2

 T1

 T’1

 T1

4th International Conference on Computer Integrated Manufacturing CIP’2007 03-04 November 2007

Most safety critical systems require full fault tolerance

approache. However, this solution failed in case where failure
hypothesis are not respected.

 For this, degraded functionality mode is necessary in such
critical system. A strategy for automatically obtaining
degraded functionality mode is proposed.

 Results show that ADAF automatically obtains degraded
functionality mode in order to tolerate transient timing faults
and processor silent failure. Future work will be to extend the
proposed approach to dynamic real time scheduling algorithm.

REFERENCES
[1] A. Girault, H. Kalla, M.Sighireanu, and Y. Sorel, “An algorithm for

automatically obtaining distributed and fault-tolerant static schedules,” In
IEEE Int. Conf. on Dependable Systems and Networks, San-Francisco,
USA, June 2003.

[2] Y. Oh, S.H. Son, “An algorithm for real-time fault-tolerant scheduling in
multiprocessor systems,” in Proc. Euromicro Workshop on Real-Time
Systems, Greece, 1992, pp. 190-195A.

[3] S. Ghosh, R. Melhem, D. Mosse, and J. S.Sarma, “Fault-tolerant rate-
monotonic scheduling,” Journal of Real-Time Systems, 1998.

[4] B.W.Johson, “Design and Analysis of Fault Tolerant Digital Systems”.
Addison Wesley Pub. Co, Inc, 1989.

[5] B. Mirle and A.M.K. Cheng, “Simulation of fault-tolerant scheduling on
real-time multiprocessor systems using Primary Backup overloading,”
Technical Report UH-CS-06-04, University of Houston, May 21, 2006.

[6] F. Cridtan, “Understanding fault-tolerant distributed systems,”
communication of the ACM, Vol-34(2), pp 57-78, 1991.

[7] S. Punnekkat, “Schedulability Analysis for Fault tolerant Real-Time
Systems,” PhD thesis, University of York, 1997.

[8] H. Kalla, “Automatique Generation of Fault Tolerant, Reliable, and Real
Time Distribution/Scheduling,” PhD thesis, Polytechnic National
Institute of Grenoble, December 2004.

[9] M.Y.K. Kwok and I. Ahmad, “Dynamic critical- path scheduling: an
effective technique for allocating task graphs to multiprocessors,”IEEE
Transaction on parallel and Distributed Systems, Vol 7, NO. 5, May
1996.

[10] H. Zou and F. Jahabian, “Real-time primary-backup (RTPB) replication
with temporal consistency guarantees,”IEEE Transactions on Parallel
and Distributed systems, v.10 n.6, p.533-548, 1998.

[11] O. Gonzlez, H. Shrikumar,J.A. Stankovic, and K. Ramanritham,
“Adaptative fault tolerant and graceful degradation under dynamic hard
real-time scheduling”. In Proc.of the 18 th IEEE Real- Time Systems
symposium, San Fransisco, CA, Dec.2-5, 1997.

