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Abstract- This paper presents an approach by 
multiobjective optimization of the output feedback design in 
discrete time. The objective is to search a controller 
stabilizing the system with schedules charges temporal or 
frequential constraints. This is achieved by using the Youla 
parametrization  based on initial corrector H2, combined 
with different Lyapunov functions; via LMI (Linear Matrix 
Inequality) optimization a comparison of approach is done 
with a initial corrector LQG, another goal of this work  is 
also reducing the conservatism. 

 Index Terms- Youla Parametrization , LMI Optimization,  
H2 control, Multiobjective control. 

I. INTRODUCTION 
 

A LMI is a constraint of affining on the design variables, 
the characteristics of attenuation such as the placement of 
poles, robust stability, execution LQG, or of RMS, gains 
which can be expressed like LMIs. These characteristics 
define a multiobjective problem that can be solved 
numerically via convex optimization under LMI 
constraints[1]. The LMI optimization treats a problem with 
contradictory objectives, our objective is to found an optimal 
solution who is a compromise between all the defined 
objectives. The method of synthesis presented rests on the 
Youla parametrization [2,3]. Indeed, we use the fundamental 
properties of the Q-Parameter to present a methodology to 
obtain a representation of the inter-connected systems G, J 
and Q of closed loop FL(P,K) (linear Fractional 
Transformation or LFT Lower). We consider the H2 
controller as an initial corrector for the Youla 
parametrization, Where the Q-Youla  gives access to all the 
correctors K who stabilize the closed loop via the parameter 
Q. Hence it exist a corrector satisfying the schedule of 
conditions,  we can  find it by convex optimization[4]. This 
parameterization transform the initial problem into a convex 
LMI problem . This formalism is particularly adapted to the 
multi-criteria design because it possible to juxtapose the 
criteria without losing convexity [1,5,6]. In this work we can 
following this three steps  to treat a problem of control by 
LMI convex optimization. The first one is the formulation of 
the initial problem to a optimization problem. The second is 

how to get a convex formulation, and the last one is the 
construct of the command law. Each stage of this process 
modifies the initial problem, and so induced a difference 
between the practical solution (found) and the theoretical 
optimal solution. Then the notion of the conservatism 
(Complexity / Calculability)[7] of the problem became 
another problem. The principle of multiobjective is to satisfy 
several criteria simultaneously. 

II. OPTIMIZATION PROBLEM 
Is defined by:  
                                                                                        (1)  

3. DEFINITION OF SOME CRITERIA 
 
A. H∞ Norm [6,7] 
  

Matrix characterization of the H∞ is represented by the 
inequality: 
 
                                                                                        (2) 
 
 
B. H2 Norm [1,4,7] 
 

Is represented by the inequality: ∃X2 = X2
T and Y=YT > 0  

such as: 
   
                                                                                      (3) 
 
 
 
C. Property of α-stability   [7]  
 

A system (A,B, C, D) is α-stable if and only if: 
 
     
                                                                               (4) 0
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III. PROBLEM OF LMI OPTIMIZATION [8,9]                                                                        
 

     
                                                                                       (5) 

      
 
 

Some tools for LMI representation (formulation) 
 
A. Lemma of Schur   
 

The two inequalities are equivalents  
 
                                                                                       (6) 
 
B. Modification by congruence 
 
A and Π∈ Cnxn  if A>0 then ΠTAΠ≥0                       (7)  
 
C. Lemma S-procedure  
 
Is defined by this bijective relation: 
 
                                                                                       (8) 
 
  

IV. MULTICRITERIA PROBLEM 
 

By using the following notations that refer to the figure1, 
the noted transfers of a Ti : wi→zi have as a representation of 
state [1]:  
 
                                                                                                       
                                                                                         (9) 
 
 
 
                                                                                                                  

 
 
 
 
 
 

Fig.1. Closed loop system 
 

Then closed loop system T=(P*K)=LFT(P,K)=FL(P,K) 
check the three following properties:                                                                                                                     
                                                                                       (10)                                                                                                                            
   

if and only if there are 4 matrices X1, X2, X3 , Y such as : 
[1,6,7]  
 

H∞                                                                                                                                                         
                                                                                    (11) 

 

                                                                                                                   
 
 
     
 
 
 H2                                                                             (12) 
 
 
 
   
 α-stability                                                                  (13)  
 

The inequalities of the multiobjective problem (11-13) are 
not linear on the unknown variables, and there does not exist 
today of methods to solve this kind of problem. It is thus 
necessary to transform it, while preserving its characteristics. 
We keep the Lyapunov function considered different for 
each criteria (Xi, i=1,2,3 for H2, H∞, α-stability).  

 
V. OPTIMIZATION OF THE PARAMETER OF YOULA 

 
The standard representation is represented in figure2 [2, 3] 
 
 
 
 
 
 
 
                                     ⇔ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. General form of the parameterization of Youla 
 

   
                                                                                   (14)          
     
                      
                                                                                  (15)       
                                                                        

 
Defined the two dual algebraic Riccati equations[10,11]  
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The two gains F2 and L2 such as (A, B2) is stabilizable and 

A,C2) is detectable, or there the two evolution matrices (A-
B2F2) and (A-L2C2) (18) are stable, we can computed by: 

                          222 XBF T−=                                     (19)  

   and                
TCYL 222 −=                                        (20) 

The H2 corrector is defined by : 
 
 
                                                                                 (21) 
 

According to the fundamental property of the Youla 
parametrization G22=0 which expresses that all the transfer of 
the closed loop system are linear on Q  [2,3] : 

                                                                                                                                      
                                                                                  (22) 
 
 

It possible to obtain a representation of state which is 
simultaneously in form commendable and observable in the 
following form [2, 3]: 

 

  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00

00

2ˆ1ˆˆ

ˆ222212221

ˆ112111211

22122

ˆ211131

yyy

u

u

u

DDC
DDDCC
DDDCC

BBA
BBBAA

G
          (23)                                          

To obtain the Youla parameterization returns to calculate: 
The system of interconnection J and Q such as J*Q=K figure 
2 stabilizing for P, for our approach is to fix J and find Q 
optimal via LMI optimization. 

VI. LINEARIZATION OF THE MATRIX INEQUALITIES  
 

The system G of the figure2 is asymptotically stable, and 
Q a static output-feedback. We will show that there is a LMI 
formulation with the control problem H2, H∞ and α-
stability. This result is obtained by matrix handling. Let us 
consider the matrix characterizations of the H2 and H∞ 
norms of the closed loop system T (24); taking into account 
property 3 of the Youla parametrization, the representation of 
state of the system T has the following form: [3] 

 
 
 
 
                                                                                                                                                                       
 
 
 
                                                                              (24) 
 

Characterizations by matrix inequalities of the H∞ and H2 
norms exposed to § 4 are applied to T and they are not linear 
on the decisions variables (Xi Lyapunov functions and the 
gain Q). For example the term X1.AGcl (11) fact of 

intervening a term where intervenes in the same product X1 
and Q. It is thus necessary to modify the problem to 
transform it into a convex problem of optimization. So the Xi 
is the Lyapunov function associate on the criteria i (i=1,2,3 
respectively H∞, H2, α-stability) it partitioned in the same 
proportions  that the evolution matrix AG: 
                                                                                        (25) 
 

 
Using the S-procedure lemma (bijective change of 

variable), and the propriety of congruence lemma with taking 
the following matrix:    

                                                                                    (26) 
 
 

By applying these successions of stages to the system T. 
The matrices characterizations of the three criteria described 
to the §4, we obtain the following LMI: 
 
A. Problem of H∞ 
 

By using the congruence: Π1=diag(M1 M1 I I)            (27) 
We obtain from(11):   
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B. Problem of  H2 
  
By using the congruence lemma by the two matrix: Π21, Π22 
            Π21=diag( M2  M2   I )                                         (29)  
    and  Π22=diag( M2   I     I )                                          (30) 
  We obtain from (12) : 
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C. Problem of  α-stability 
 

 By using congruence by the matrix :  
 Π3=diag( I  M3 )                                                      (32)   
 we obtain from (13)  
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These various inequalities (28), (31), (33) are indeed linear 

on the variables of decisions R1, S1, T1, Q and γ1 for the 
problem H∞ and R2, S2, T2, Q and γ2

2 for the problem H2 and 
R3, S3, T3, Q for the problem α-stability. The three problems 
H2 and H∞ and α-stability are coupled by the static output 
feedback Q and the different Lyapunov functions. 
 
Note: 

  The value of α-stable was selected to force the dominant 
poles of the closed loop. 
The sensitivity is defined by S=(I+KG)-1 [3].               (34) 
                                                     

VII. APPLICATION   
 
We consider the system P defined by : [12] 
                                            

6908.0874.1158.2

2217.003516.02879.0
)(
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zzz

zz
zP                             (35) 

A.  Schedule of conditions 
 
1.      Response time  tr<1.8s, and time of rejection of 
disturbance trd< 1.8 s 
2.      Max of   sensitivity function disturbance -output   
|S|<15db 
3.      Max of   sensitivity function disturbance -command   
|KS|<12db 
 
B. Implementation by the introduction of the weight functions 

 to achieve the desired objectives. For that, one considers 
figure 4 in which the error e is weighted by the filter W3(p), 
the control u by W2(p), and the entry of disturbance b is 
weighted by the filter W1(p), one can puts the whole in the 
following form: 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4. Block diagram of the augmented system 
 

While taking : 
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Note.1. 
 

 The frequential response for each functions S and KS is a 
constraint, which depends on the filter selected: 
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        (36)   

Note.2. 
 

To reduce the conservatism from the complexity (and 
calculability) point of view of the problem one satisfies to 
optimize γ such as γ=γ1+λγ2

2 / λ=0.01∈[0, 1] without losing 
the convexity of LMI problem. The following results are 
obtained:  
 

Table1. 

Recapitulative 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig5.  Response of the system with LQG corrector initial 

Recapitulative With H2 initial 
corrector 

With LQG initial 
corrector 

Nbr of matrix 
inequalities 

6 6 

Nbr of decision 
variables 

195 195 

Nbr of objectives 1 1 
Lyapunov Fcts  Different Different 
Structure of 
Lyapunov Fcts  

Toeplitz Toeplitz 

α-stable value 0.88 0.88 
Response time Tr=1.5sec tr= 1.8 sec 
Rejection of 
disturbance time 

Trej/dist=1.5 sec Trej/dist=1.5 sec 

Overschoot D=1.10 db D=1.20 db 
Time computing 
LMI 

47.5101 sec 8.8001 sec 

Max of the 
sensitivity S 

|S|=14.8 db   |S|=7.82 db   

Qopt    
 γopt 

Qopt=  4.0082    
γopt=  2.9162  

Qopt= 0.9551  
    γopt= 1.6327  
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Fig.6. Response of the system with H2 corrector initial 

 
 

    Fig7. Value singular of sensitivity S (Blue) and the function 1/W3 (green) 
With LQG corrector initial 

 

 
  Fig8. Value singular of sensitivity S (Blue) and the function 1/W3 (green) 

With H2 corrector initial  

VIII. CONCLUSION  
 

From the properties of the Youla parametrization we can 
to present a methodology who it possible to obtain a 
representation of the inter-connected systems of the closed 
loop. This parametrization can to ensure also the convexity 
of the problem (optimal solution), under an initial H2 

corrector which gave us a good results. The solution given 
by the LMI optimization for the defined objectives is a 
compromise between all objectives, and this design in term 
of optimization is similar to the approach of the optimality 
defined by Pareto. Moreover the unacceptable computing 
time and the occupied memory capacity increase the problem 
of conservatism. The quality of the results (responses) 
depends on the initial corrector selected. In this work the 
optimal response of the closed loop system was enhancing by 
ours  initial corrector.  
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