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Abstract— Predictive functional control (PFC), belongs to the
family of predictive control techniques. It has been demonstrated
as a powerful algorithm for controlling process plant. In this
paper, PFC strategy is extended to nonlinear processes. The
predictive functional control is combined with a fuzzy model of
the process and formulated in the state space domain. The
process model is decomposed into subsystems each described by
a fuzzy rules. In controller design, prediction errors and control
energy is minimised trough a two layered iterative optimization
process. The lower layer finds local control policies for each sub
system. The objective of the upper layer is to find a near
optimum for the overall system trough coordinating the
subsystems. The performance of the FPFC approach is
demonstrated trough an example of CSTR process.
Index Terms—Fuzzy identification, predictive control,
decomposition-coordination, nonlinear systems.

I. INTRODUCTION

Predictive functional control frequently abbreviated to PFC,
is a form of predictive control which belongs to the
classical family of model based predictive control since it
fulfills the following basic generic principles [1]:
-Internal model: used for prediction
-Reference trajectory: to specify the future closed loop
behaviors
-Structure future manipulated variable and algorithmic solver
-Modeling error compensation to take into account prediction
error.
PFC can use many forms of internal model, including state
space, input output, finite input response (FIR), fuzzy
rule...However the main distinguishing feature of PFC over
other MPC algorithms is that the internal models used are
independent internal models, which depend solely on the
process input. Perhaps the second distinctive feature of PFC is
that the future input is assumed to be a linear combination of a
few simple basis functions. In principle these could be any
appropriate functions.

There have been many propositions to generalize linear
predictive control algorithms to nonlinear systems through the
use of Takagi Sugeno fuzzy inference system [2]. Two
approaches can be identified. In the first, the TS fuzzy
inference systems is used to combine local linear models,
producing an overall linear time variant predictive model
which is used to derive the control law [3,4] . In the second,
local linear model based predictive controllers may be
computed for each rule and the local controllers are merged to
produce the overall controller. In this case, the method used
for merging the local controllers is usually based on the
weight associated with each local model [5,6,7]. However this
does not guarantees optimality of the control law. To alleviate
this problem, it has been suggested in [8] to construct a
hierarchical control algorithm that guarantees optimality for
fuzzy predictive control. In this work, we apply this
hierarchical approach to design predictive functional control
law for non linear system based on Takagi Sugeno fuzzy
model. This paper is organized as follows: in the second
section, we introduce the fuzzy identification, in the third
section we develop the hierarchical approach and in the fourth
section we present the simulation results.

Il. FUZZY IDENTIFICATION

Consider a single-input single output (SISO) non linear
system S. The model of the system is decomposed into P
submodels such that each demonstrates a linear behavior. By
Takagi-Sugeno’s modeling methodology [2], it can be written
as:
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Where X,,..., Xy are the inputs, Alis a subset of the input

space, yis the output, and fJis a linear function of the

inputs.

In our case the local fuzzy linear sub model corresponding to
fuzzy rule R', is established in a discrete time representation.
It is written as:

R':ifu(k) is A'then



y' (k+1) =a; (K)y(k) +aj (K)y(k-1)
+ay(k)y(k—2)+b' (k)u(k —D)+r',
Where y'(k+1) is the output of the ith local linear submodel
corresponding to ith  fuzzy rule and vy (k),y (k-1),
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y(k—2), u(k — D) are the inputs to the fuzzy model. D stands

for the dead time expressed by the number of samples, A' are
antecedent fuzzy sets and u(k) is the antecedent variable. The
output of the overall dynamical model is obtained by merging
all local linear submodel using fuzzy mean defuzzification
method:

P
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Where P stands for the number of rules and g, (k)is the
normalized degree of fulfillment of i th rule at k th step:
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With:
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The parameters of the fuzzy model are obtained on measured
input output data using classical least square optimization
method.

o = %)Y
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Where:
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viand Y " are matrices of data.

Vectors 6, can be grouped in a matrix of parameters

o=[g 6, 6], 7)
Where i th column represents the parameter vector the fuzzy
model can be written in the following form of the i th
subsystem:

y' (k+1)=a; (K)y(k)+a; (k)y(k -1)
+33(K)y(k-2)+b " (K)u(k -D)+F ',
i=1...P

(®)

I1l. PREDICTIVE FUNCTIONAL CONTROL BASED ON
FUZZY MODEL

The design goal of predictive control is to predict the future
behavior of the process over certain horizon using the
dynamic model and obtaining the control actions to minimize
a certain criterion, generally
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y.(k+ )y, (k+ j)uk+ j) Are respectively j-step ahead
predictions of the process output, the reference trajectory and
the control signal, respectively. Parameter A is the weight of
the control signal energy.N;,N, and N, are minimum and
maximum output predition horizon and control horizon
respectively.

PFC is designed in the time domain. Altough in principle it
is similar to the classical model based predictive control its
formulation is different. It is based on the idea of coincidence
points in a prediction horizon H and the minimization of cost
function (9) is not explicit [1].

In the following, we develop the hierarchical control design
for fuzzy PFC. The whole design is decomposed into the
derivation of P local functional predictive controllers which
will be coordinated to derive a global optimal control strategy.
The local controllers are based on linear submodels of the
form (2) and are produced by the lower layer.

A) Lower layer design:

At this layer we consider all P linear submodels, then for the j
th submodel we find the associated control signal. We first
rewrite (2) in state space form.define the optimization problem
as follows:

Xin(k +1) = AlnX'n(k) + B'nt' (k) + R'n + &' (k) (10)
The state vector Xy (K) is
y'm(Kk)
X'm(k) =| y'm(k —1) (11)
y'm(k —2)
The matrix A B R and ém become:
ay a, as
An=|1 0 0 (12)
0 1 0
"
Blm=|0 (13)
0
IGETE)
Rim = 0 (14)
0
C'm=[1 0 0]
(15)

Where i) serve for system coordination and is determined
at the upper layer.

In order to derive the local predictive functional control law,
we consider the prediction model of the i th subsystem. The H
step-ahead prediction can be written



Yin(k+H) =0l (AnX (K)+

(B .4 Ao+ 1) (B i) +Rin))
with  u(k)=u(k+1)=..=u(k+H -1)
The sum of the powered Am matrices can be simplified as

(16)
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An bt A+ 1 =(Am = 1)(An—1)" 17)
The closed loop response should be similar to the reference
trajectory, which is the output of the reference model:[6]
X, (k+1)=A X, (k)+B,wk)

Y, (k)=C,X, (k)

Matrices Ar, Br and Cr have to be chosen to fulfill the
following equation:

C.(1-A)'B, =1 (19)
In the same manner, the H step-ahead prediction of the
reference model can be written as:

y,(k+H)=C,(A"x, (k) + (A" = I)(A —1)'B,w(k)) (20)
The main idea of FPFC is the equivalence of the objective
increment of the process and the model output increment. The

objective increment A, is defined as the difference between
predicted reference trajectory vy (k+H) and actual output
signal:

(18)

4, =y, (k+H)-y'5 (k) (22)
4, = C (A% (k) + (A" = 1)(A ~ 1) Bw(K)) - ¥, (K) (22)
The model output increment A, is defined by:

A, =Y'm(k+H)-y'n (k)

2,=G (A, () + (A" 1) B ~1)* Brta)+Rr)) - (k) (23)

From the above equations and the goal of FPFC, this is
described with the following:

Ay =A, (24)

By deriving the control variable u (k), the control law given
by:
C,A"x

Uiy = CAATX(K) + (A7 = (A, = 1) B,w(k) — y'a (k) _

Cin(A'n = 1)(AL = 1) 'B'n
ClnAlmX'm(k) = C'm(A'n = 1) 'R'n — y'n (k)
Cln(A'n = 1)(Alm = 1)*B'n
The control signal U'(k)is produced by the ith linear
submodel. The following set includes the information which
will be transmitted to the upper layer.

s =y (k+ H)U (0

(25)

(26)

B) Upper layer design:

The upper layer coordination targets the identification of
globally optimal control policies through coordinating &' (k)
for each of the P local submodels: &' (k) represent the

difference between y(k+H) and y' (k+H).
From the lower layer, the local information of output and

control in SLLU is transmitted to the upper layer.

At the upper the error variables are evaluated

as el(k+H)-yl(k+H)

These values are compared with those for the same error
variable calculated in the last iteration, say &' (K + H)and
compared with the smallest tolerable error £ . Then if

i\ei(k+H)—gi(k+H)>g\ 27)
j=1

the control policies are not optimal and need be modified at

the local layer this can be accomplished in a new iterative

process by sending down the set SJ  for each subsystem.

This exchange of information between lower and upper layer
is repeated during the sampling period until :

zpl‘ej(k+H)—gj(k+H)<§‘

i=1

(28)

in which case the global control policy derived from the
optimal local control policies at the lower layer is considered
as near optimal. The control signal is then obtained by
merging the local control policies according to fuzzy mean
defuzzification method, that is:

> A
with /3, given by (4) by (4) and satisfying Zﬂ, (k) =1

IV. RESULTS OF SIMULATION

In this section we consider the application of the
algorithm to the control of the concentration on a
continuous stirred tank reactor. The CSTR is a process
highly nonlinear, which very common in chemical and
petrochemical plants. In the process, an irreversible,
exothermic reaction A— B takes place in a constant
volume reactor cooled by single coolant flow. The
process is modelled by the following equations:

dC,(t+d)
dt

e
29)

4T _ a0
dt Y

- Die,0-cuerar-ke,e+o

(~4H)k,C, (t+d)
<y

exp(_E ]+p°C”° g, (t)1—exp —hA
RT(t)) pCV q.(t)eC,

x(Teo (1) =T ().

The objective of the design is to control the concentration
of A, C, (t) by manipulating the coolant flow rate q. (t)
the nominal parameter values of the process are given in
Tablel.

For fuzzy modelling, the above nonlinear model is used to
produce input-output time series data. The sampling time
is set to 0.083min (5s). The data is then used to develop a
global fuzzy model as follows:

o (O-T(1) -
(30)




R: IF q. is Q'
THEN C*a(n+1)=a;:Ca(n-1)+ a;, Ca(n-2)+
a1z Ca(n-3)+b1qc(n)+ry

R% IF g is Q°
THEN C2a(n+1)=a,,Ca(n-1)+ ay, Ca(n-2)+
ar3 Ca(n-3)+b2qc(n)+r2

The fuzzy model is structurally very simple and requires only
two fuzzy rules, fig.2 shows the fuzzy sets Q* and Q%

Fig. 3 shows the open loop response with various step changes
in the coolant flow rate: the identification of the fuzzy model
can nearly perfectly describe the process dynamic behaviour .
The vector of parameters of i rule is obtained by using the

least squares method:

a,, =-0.9090 a,, =-0.9264
a,, =-0.1444 a,, =-0.1383
a,,=0.0615 a,,= 0.0680
b, =0.0002 b,=0.0008

r,=-0.0013 r, =-0.0005

TABLE I
SPECIFICATION OF THE CSTR

Process variable Normal operation
condition
Measuredproduct 0.1mol/l
concentration(Ca)
Reactor temperature(T) 438.54K
Coolant flow rate(gc) 103.41l/min
Process flow rate (q) 100.0 I/min
Feed concentration(C o) 1 mol/l
Feed temperature(T0) 350.0K
Inlet coolant temperature (Tc0) | 350.0K
CSTR volume(V) 1001

Heat transfer term(hA)

7.2%10° cal/(min.K)

Reaction rate constant(k0)

7.2%10%min?

Activation energy term(E/R) 1X10°K
Heat of reaction (-AH ) -2>10° cal/mol
1X10%y/l
Liquid density ((,0, pc) J
Specific heats(Cp,Cpc) 1 cal/(g.K)
4(9 (1))
10 Ql QZ
0 >

97.0 109.0

q.(t)

Fig 1: Fuzzy sets Q' and Q? for FIs R' and R?
respectively
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Fig..2 open loop composition response of the CSTR process
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Fig.3 Concentration set point tracking of the CSTR process

We study the control quality the FMPC controller by a series
of simulations. In testing the set point tracking capability, the
set point of C, was changed from the nominal operating point
0.1 mol/l to 0.135, to 0.12, to 0.105, to 0.75, and then to 0.09
(Fig 3, dash line) . The dynamic response of the system is
depicted in the same figure.

V. CONCLUSION

A fuzzy functional predictive controller for nonlinear
systems based on hierarchical design has been developed.
At the lower level, local controller are designed for each
rule of a Fuzzy Takagi Sugeno model. At the upper level
coordination is performed using error variables. The
approach reduces the computation time of nonlinear
model predictive control and allows online applications.
The method is applied for the control of concentration of
a CSTR with encouraging results.
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