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Abstract— Predictive functional control (PFC), belongs to the 
family of predictive control techniques. It has been demonstrated 
as a powerful algorithm for controlling process plant. In this 
paper, PFC strategy is extended to nonlinear processes. The 
predictive functional control is combined with a fuzzy model of 
the process and formulated in the state space domain. The 
process model is decomposed into subsystems each described by 
a fuzzy rules. In controller design, prediction errors and control 
energy is minimised trough a two layered iterative optimization 
process. The lower layer finds local control policies for each sub 
system. The objective of the upper layer is to find a near 
optimum for the overall system trough coordinating the 
subsystems. The performance of the FPFC approach is 
demonstrated trough an example of CSTR process. 
 

Index Terms—Fuzzy identification,  predictive control, 
decomposition-coordination, nonlinear systems.  
 

I. INTRODUCTION 
redictive functional control frequently abbreviated to PFC, 
is a form of predictive control which  belongs to the 
classical family of model based predictive control since it 

fulfills the following  basic generic principles [1]: 
-Internal model: used for prediction 
-Reference trajectory: to specify the future closed loop 
behaviors  
-Structure future manipulated variable and algorithmic solver  
-Modeling error compensation to take into account prediction 
error. 
PFC can use many forms of internal model, including state 
space, input output, finite input response (FIR), fuzzy 
rule…However the main distinguishing feature of PFC over 
other MPC algorithms is that the internal models used are 
independent internal models, which depend solely on the 
process input. Perhaps the second distinctive feature of PFC is 
that the future input is assumed to be a linear combination of a 
few simple basis functions. In principle these could be any 
appropriate functions. 

 
 

There have been many propositions to generalize linear 
predictive control algorithms to nonlinear systems through the 
use of Takagi Sugeno fuzzy inference system [2]. Two 
approaches can be identified. In the first,  the TS fuzzy 
inference systems is used to combine local linear models, 
producing an overall linear time variant predictive model 
which is used to derive the control law  [3,4] . In the second, 
local linear model based predictive controllers may be 
computed for each rule and the local controllers are merged to 
produce the overall controller. In this case, the method used 
for merging the local controllers is usually based on the 
weight associated with each local model [5,6,7]. However this 
does not guarantees optimality of the control law. To alleviate 
this problem, it has been suggested in [8] to construct a 
hierarchical control algorithm that guarantees optimality for 
fuzzy predictive control. In this work, we apply this 
hierarchical approach to design predictive functional control 
law for non linear system based on Takagi Sugeno fuzzy 
model. This paper is organized as follows: in the second 
section, we introduce the fuzzy identification, in the third 
section we develop the hierarchical approach and in the fourth 
section we present the simulation results. 

 

II. FUZZY IDENTIFICATION  
Consider a single-input single output (SISO) non linear 
system S. The model of the system is decomposed into P 
submodels such that each demonstrates a linear behavior. By 
Takagi-Sugeno’s modeling methodology [2], it can be written 
as: 
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Where are the inputs, is a subset of the input 

space, is the output, and  is a linear function of the 
inputs. 
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In our case the local fuzzy linear sub model corresponding to 
fuzzy rule Ri,  is established in a discrete time representation. 
It is written as: 

iR : if u(k) is then  iA
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Where  is the output of the ith local linear submodel 
corresponding to ith  fuzzy rule and ,

)( 1ky i +
)(ky )( 1ky − , 

, are the inputs to the fuzzy model. D stands 
for the dead time expressed by the number of samples, A

)( 2ky − )( Dku −
i are 

antecedent fuzzy sets and u(k) is the antecedent variable. The 
output of the overall dynamical model is obtained by merging 
all local linear submodel using fuzzy mean defuzzification 
method: 
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Where P stands for the number of rules and )(kiβ is the 
normalized degree of fulfillment of  i th rule at k th step: 
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With:  
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put data using classical least square optimization 
method. 
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iψ and  
i

Y  are matrices of data. 
Vectors iθ can be grouped

[ ]P

 in a matrix of parameters  

θθθ ..21=Θ ,                                                    (7)    
Where i th 

                                                             
column represents the parameter vector the fuzzy 

model can be written in the following form of the i th 
subsystem: 
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II. PREDICTIVE FUNCTIONAL CONTROL BASED ON 
FUZZY MODEL 

The design goal of predictive control is to predict the future 
behavior of the process ov

tions to minimize 

∑∑
=

+++−+=
Nu

1j

22

1N
rm jkujkyjkyku )())()((),( λ                        (9) 

)(),(),( jkujkyjky rm

2N

J

+++  Are respectively j-step ahead 
predictions of the process output, the reference trajectory and 
the control signal, respectively. Parameter λ  is the weight of 
the control signal energy.N1,N2  and Nu   are minimum and 
maximum output predition horizon  and control horizon 
respectively. 

PFC is designed in the time domain. Altough in principle it 
is similar to the classical model based predictive control its 
formulation is different. It is based on the idea of coincidence 
points in a prediction horizon  H and the minimization of cost 
function (9) is not explicit [1].  

In the following, we develop the hierarchical control design 
for fuzzy PFC. The whole design is decomposed into the 
derivation of P local functional predictive controllers which 

ill be coordinated to derive a global optimal w control strategy. 
e based on linear submodels of the 
d by the lower layer. 

l we find the associated control 
 form.define the optim

The local controllers ar
form (2) and are produce
 
A) Lower layer design: 

At this layer we consider all P linear submodels, then for the j 
h submodet signal. We first 

re ization problem write (2) in state space 
as follows: 
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The state vector x (k) 
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In order to derive the local pr
we consider the prediction model

 prediction can be written 

(1
Where )(kiε  serve for system coordination and is determined 
at the upper layer.  
 
 

edictive functional control law, 
 of the i th subsystem. The H 
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mA~ matrices can be simplified as 
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The main idea of FPFC 
increment of the process and the model outp

                                                        
onse should be sim lar to the reference 

he output of the reference model:[6] 
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reference model can be written as
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From the above equations and the goal of FPFC, 
escribed with the following: 
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By deriving the control variable u (k), the control law given 
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submodel. The followin
will be transmitted to the upper layer. 
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B) Upper layer design: 
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The upper layer coordination targets the identification of 
globally op  control policies through coordi )(kiε  

for each of the P local submodels: )(k  represent the 
difference between y(k+H) and y

iε
i (k+H). 

Fro e 
control in j

ULS →
is transmitted to the upper layer. 

At t e p er th  rror u variables are evaluated 

as )()( HkyHke jj +−+  
These values are compared with those for the same error 
variable calculated in the last iteration, say )( Hkj +ε and 
compared with the smallest tolerable error ζ . Then if  
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 the control policies are not optimal and need be modified at 
the local layer this can be accomplished in a new iterative 
process by sending down the set j

LUS → for each subsystem. 
This exchange of information between lower and upper layer 
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IV. RESULTS OF SIMULATION  
In this section we consider the application of the 
algorithm to the control of the concentration on a 
continuous stirred tank reactor. The C ess 
highly nonlinear, which very common i
petrochemical plants. In the process, an irreversible, 
exothermic reaction A B takes place in a constant 

single coolant flow. The 
process is modelled by the following equations: 
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The objective of the design is to control the concentration 
 manipulating the coolant flow rate qc (t) 

ven in 

el is used to 
utput time series data. The sampling time 

 to develop a 

of A, CA (t) by
athe nomin l parameter values of the process are gi

Table1.  
For fuzzy modelling, the above nonlinear mod
produce input-o
is set to 0.083min (5s). The data is then used
global fuzzy model as follows: 
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R1: IF qc is Q1  
THEN C1

A(n+1)=a11CA(n-1)+ a12 CA(n-2)+ 
 a13 CA(n-3)+b1qc(n)+r1                                     
 
R2: IF qc is Q2  
THEN C2

A(n+1)=a21CA(n-1)+ a22 CA(n-2)+ 
a13 CA(n-3)+b2qc(n)+r2     

 
The fuzzy m ly very ire only 
two fuzzy ru s  the fuzzy
Fig. 3 shows p response w  ch ges 
in the coolan the identifica y model 
can nearly pe ibe the proce avi ur . 
The vector o  of ith rule sing the 
least squares
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Process variable No
con

Measuredproduct 
concentration(CA) 

0.1

Reactor temperature(T) 438
Coolant flow rate(qc) 103
Process flow rate (q) 100
Feed concentration(CA0) 1 m
Feed temperature(T0) 350
Inlet coolant temperature (Tc0) 350
CSTR volume(V) 100
Heat transfer term(hA) 7.2
Reaction rate constant(k0) 7.2
Activation energy term(E/R) 1×
Heat of reaction (- H∆ ) -2×

Liquid density ( ),( cρρ  
1×

Specific heats(Cp,Cpc) 1 c
 

 
 
 

Fig 1: Fuzzy sets Q1 and Q2 for FIs R1 and R2, 
respectively 
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Fig..2 open loop composition response of the CSTR process 

 
Fig.3 Concentration set point tracking of the CSTR process 

 
 
We study the control quality the FMPC controller by a series 
of simulations. In testing the set point tracking capability, the 

t point of CA was changed from the nominal operating point 
0.1 mol/l to 0.135, to 0.12, to 0.105, to 0.75, and then to 0.09 
(Fig 3 , dash line) . T nse of the system is 
depi
. 

 error variables. The 
approach reduces the computation time of nonlinear 
model predictive control and allows online applications. 
The method is appl trol of concentration of 

se

he dynamic respo
cted in the same figure.  

V. CONCLUSION 
.A fuzzy functional predictive controller for nonlinear 
systems based on hierarchical design has been developed. 
At the lower level, local controller are designed for each 
rule of a Fuzzy Takagi Sugeno model. At the upper level 
coordination is performed using

ied for the con
a CSTR with encouraging results. 
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