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Abstract: This work describes the simulation of a nonlinear 
geometric control with state estimation by extended 
Kalman filter (EKF) in its continuous/discrete form. 
Measurements with delays and different sampling periods 
are used following previous simulation studies. The 
biological process studied is a fed-batch reactor for baker's 
yeast production. The state variable estimations are applied 
to the nonlinear control law developed in the framework of 
differential geometry theory. 
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I.  INTRODUCTION 

    Biotechnological processes are characterized by a 
strongly nonlinear and unsteady behavior, so that linear 
control is not well adapted Bastin (1990). Recently, 
nonlinear techniques, which can deal with nonlinear and 
unsteady processes, have been developed Isidori (1989); 
Kravaris (1990) and particularly applied to chemical 
engineering Soroush (1993). 
Nonlinear control based on differential geometry 
transforms a nonlinear into a linear system by a global 
or local coordinate change, either with respect to the 
state space equations or the input-output behavior 
Isidori (1989). The first method was introduced by 
Brocket(1978), Su(1982) and Hunt & Su(1983), who 
proposed a coordinate change and state feedback, 
which transforms a nonlinear state space model into a 
linear state space with specific characteristics. 
Examples can be found in works by Hoo (1986).  
In the same context of linearization of the state space 
equations, Gilbert(1984) considered also error 
equation linearization. Isidori(1989) developed input- 
output linearization, which has been applied here in 
this work on a complex model of a pilot plant of 
baker's yeast production, a highly nonlinear 
fermentation process.[1],[5] 

II.  INPUT-OUTPUT LINEARIZATION OF NONLINEAR 
SYSTEMS 

The SISO system, affine with respect to the input u, is 
modeled as : 
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where Rx n∈  is the state vector, Ru∈  the input and Ry∈  
the output. 
A necessary and sufficient condition for input-output 
linearization is the existence of a positive integer r defined 
as the relative order. In this case, the nonlinear system can 
be transformed as: 
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to realize asymptotic tracking, a control law must be 
synthesized such that the output )(ty asymptotically 
follows a reference trajectory )(tyc . Consequently, the 

error )()()( tytyte c−=  must satisfy the following equation 
:[6] 
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where ραα ,,..., 01−r  are chosen so that the polynomial: 
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is Hurwitz. As : 
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equation (3) can be solved with respect to v to deduce the 
control law: 
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which realizes an asymptotic tracking for system (2). Thus 
the control law: 
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realizes asymptotic tracking for original system (1). 

III.  KNOWLEDGE OF THE GLUCOSE METABOLISM OF 
SACCHAROMYCES CEREVISIAE 

Saccharomyces cerevisiae is a facultative anaerobic yeast, 
sensitive to glucose catabolic repression. The nature of the 
carbon substrate leads the yeast cell to use one or another 
metabolic pathway. Generally, in the presence of molecular 
oxygen, glucose consumption by the yeast is achieved 
either by respiratory metabolism in the case of a fairly low 
glucose concentration or through fermentation with ethanol 
production. Ethanol uptake is always a respiratory 
phenomenon. 
A fed-bath process figure 1 is a procedure to limit the 
bioreactor glucose concentration and allow the best yeast 
growth. Substrate feed rate can be controlled either from 
the glucose measurement with the aid of an autosampler or 
a specific glucose sensor, or from another molecule as , for 
example, ethanol by membrane sensors. [4] 
 

 

 
 
 
 
 

 
 
Fig.1. Schematic representation of a fed-batch 
representation process. F substrate rate;Gl 0 ,  feed 
glucose concentrat ion;  Gl ,  g lucose 
concentrat ion;  X ,  total  biomass concentrat ion;  
E ,  e thanol  concentrat ion ;  V ,  volume of  l iquid 
medium. 

A.  STATE MODELING AND OBSERVATION 

A physiological model for yeast growth was employed. 
The kinetic model for yeast growth proposed by Rajab 
(1986) considers three different states: one for glucose 
fermentation producing ethanol and acetic acid; one where 
glucose is metabolized through the respiration pathway to 
sustain cellular growth; and one for ethanol respiration 
where ethanol is reconsumed for cellular growth. Kinetic 
equations correspond to an aerobic growth, with only one 
substrate limitation. Transitions between different 
physiological states are determined by the reactor contents 
in glucose and ethanol figure 2. [7],[9] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Model  of the yeast metabolism, rij transition rate 
from state xi to xj 
 
 
The states are respectively : biomass in three physiological 
states (x1 to x3), glucose (x4), ethanol (x5), acetic acid (x6), 
volume (V). The input is the glucose feed rate (1/h). The 
state space model is the following: 
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rk are kinetic rates, which in general depend nonlinearly on 
the states according to Monod models. In this study, the 
extended Kalman filter in its continuous/discrete form was 
used for state estimation; it is continuous in respect to 
states and error covariance propagation between two 
measurements, discrete for correction at measurement 
times. The volume is assumed to be known and is not 
estimated. The model can be written in the following form: 
[2],[3],[10] 
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where )(

.
tx  is the state vector, f(x(t),u) is the state function 

vector, z(tk) is the observation vector at discrete times tk, 
h(x(tk)) is the observer equation vector. 
where w(t) and v(tk) are independent, zero-mean, Gaussian 
noise processes of covariance matrices Q and Rk, 
respectively. 
The propagation of state estimation and  of the error 
covarriance matrix on the time interval [tk-1,t k] are: 
    ),,ˆ()(ˆ tuxftx =&                                                          (9)              
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The correction of the state estimation and  the error 
covarriance matrix on the time tk equal to: 
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and K(tk)  is the Kalman gain matrix equal to : 
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B.  OPTIMAL  PROCESS CONTROL FOR BIOMASS 
PRODUCTION 

The glucose concentration is the key factor in the 
regulation of the yeast metabolism during the fermentation 
process, so it is quite naturally the one chosen as the 
control variable. The optimal process control must 
maximize both cell yield and productivity, yet there is no 
way of obtaining  both the highest growth rate and the 
highest yield simultaneously. The best compromise 
consists  of working with a glucose concentration that 
offers the best specific growth rate without any notable 
decrease in efficiency. The specific growth rate is 
considered to be optimal if it is not accompanied by the 
production of ethanol, and when the growth yield is equal 
to 0.5g  of yeast per g of consumed sugar. This yield is 
obtained during physiological state X2, but the glucose 
concentration has to remain consistently quite low, i.e 
below 0.07g/l in the culture medium (Mosrati and al, 
1991). [8] 

VI.  APPLICATION OF NONLINEAR CONTROL TO THE 
PILOT PLANT 

to obtain the system relative order, the following Lie 
derivates are calculated after explanation of kinetic laws: 
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As the glucose concentration x4 in the reactor is always 
different from the feed concentration C, the Lie derivative 
Lgh(x) is not null and the relative order is equal to 1. 
From the equation (6) the following control law results: 
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where v is a new  external input: 
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the controller parameters of PI(proportional integral) are 
chosen so that the following characteristic equation has 
roots with a negative real  part ensuring sufficient 
robustness: 
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Parameters value are Kc=14.29,  τI=0.2 and closed loop 
poles are : s1=-7.14+4.51j, s2=-7.14-4.51j  
  

V. SIMULATION 

     In an actual fermentation, the process is performed in 
two stages: a discontinuous one where the input u is null 
(batch reactor) and a fed-batch stage where u is not null 
anymore (feed-batch reactor). The first stage is thus 
performed to open loop and the second to closed loop. 
Transition from open loop to closed loop occurs when the 
threshold lgx /10 3

5
−≤  is reached. 

The complete fermentation lasted 20 hours. From 0 to 10h, 
the reactor operated as a discontinuous fermentation, thus 
in open loop. After 10 hours of fermentation, it operated in 
closed loop. The glucose feed concentration was equal to 
Cgin=320g/l. 
The state observation and control were effectively 
implemented when the inoculum was introduced in the 10 
liter reactor. The initial conditions for state variables are 
the following: 010=x .35g/l, 1.020=x g/l, 

1.030=x g/l, 840=x g/l, 057.050=x g/l, 0057.060=x g/l. 
The ethanol sampling period is 3min, the glucose sampling 
period is 15min. Glucose and ethanol measurements 
present delays of 15min and 3min respectively; estimation 
between (t-15) and (t) for glucose, between (t-3) and (t) for 
ethanol are used to compensate delays.  
Glucose fermentation phase corresponds to the period 0≤ t≤ 
4h; during this time, glucose concentration decreases from 
10 to 0g/l figure 3. At t=16h, closed loop control begins 
and glucose concentration increases slowly towards the set-
point 0.07g/l, this latter corresponding to a nearly quasi- 
optimal biomass productivity. It must be mentioned that the 
set-point is filtered by a first order filter to smooth the 
trajectory and avoid input saturations figure 4. 
After  t=10h, ethanol was already completely consumed 
and the semi-continuous phase of fermentation began; 
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during this second phase, the ethanol concentration always 
remained lower than 0.1g/l figure 5.  
Figure 6 show the feed flowrate  which incrised 
exponetially after 10h 

IV.  CONCLUSION 

     Nonlinear control based on differential geometry has 
been executed  in simulation of a semi-continuous 
bioprocess. Simulations that were performed, despite of 
important and unpredictable technical difficulties, this 
control technique has shown a very good performance for 
trajectory tracking. A state observer was necessary because 
of incomplete state measurement; the extended Kalman 
filter that was used performed satisfactory in general, 
despite different measurement sampling periods and 
important delays due to the measurement techniques.  
The fixed objective is to maximize the productivity. The 
gotten control has some remarkable stability  properties, 
although the model of state of the process is greatly 
nonlinear and no stationary. Simulations show that this 
control has a good performance and robustness near the 
set-point. 
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Fig. 3. Glucose concentration evolution 
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Fig. 4. Glucose concentration during the control phase set-
point value 0.07g/l 
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Fig. 5. Ethanol concentration evolution 
 
 
 
 
 
       
 
 
 

 
 
 
                  
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Glucose feed flowrate 
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